These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25811533)

  • 1. Ultrasensitive detection of nitroexplosive - picric acid via a conjugated polyelectrolyte in aqueous media and solid support.
    Hussain S; Malik AH; Afroz MA; Iyer PK
    Chem Commun (Camb); 2015 Apr; 51(33):7207-10. PubMed ID: 25811533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms.
    Malik AH; Hussain S; Kalita A; Iyer PK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence "Turn-On" Indicator Displacement Assay-Based Sensing of Nitroexplosive 2,4,6-Trinitrophenol in Aqueous Media via a Polyelectrolyte and Dye Complex.
    Tanwar AS; Iyer PK
    ACS Omega; 2017 Aug; 2(8):4424-4430. PubMed ID: 31457734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene.
    Tanwar AS; Adil LR; Afroz MA; Iyer PK
    ACS Sens; 2018 Aug; 3(8):1451-1461. PubMed ID: 30039698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-rich triphenylamine-based sensors for picric acid detection.
    Chowdhury A; Mukherjee PS
    J Org Chem; 2015 Apr; 80(8):4064-75. PubMed ID: 25822377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Receptor free" inner filter effect based universal sensors for nitroexplosive picric acid using two polyfluorene derivatives in the solution and solid states.
    Tanwar AS; Patidar S; Ahirwar S; Dehingia S; Iyer PK
    Analyst; 2019 Jan; 144(2):669-676. PubMed ID: 30511061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-Free Detection of Picric Acid: A New Structural Approach for Designing Aggregation-Induced Emission Probes.
    Adil LR; Gopikrishna P; Krishnan Iyer P
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27260-27268. PubMed ID: 30022660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curcumin-derivatives as fluorescence-electrochemical dual probe for ultrasensitive detections of picric acid in aqueous media.
    Rai A; Jha NS; Sharma P; Tiwari S; Subramanian R
    Talanta; 2024 Aug; 275():126113. PubMed ID: 38669958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion-Exchange Induced Strong π-π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection.
    Kalita A; Hussain S; Malik AH; Barman U; Goswami N; Iyer PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25326-36. PubMed ID: 27589572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.
    Santra DC; Bera MK; Sukul PK; Malik S
    Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ratiometric probe composed of an anionic conjugated polyelectrolyte and a cationic phosphorescent iridium(III) complex for time-resolved detection of Hg(II) in aqueous media.
    Shi H; Liu S; An Z; Yang H; Geng J; Zhao Q; Liu B; Huang W
    Macromol Biosci; 2013 Oct; 13(10):1339-46. PubMed ID: 24014275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new light-harvesting conjugated polyelectrolyte microgel for DNA and enzyme detections.
    Feng X; Xu Q; Liu L; Wang S
    Langmuir; 2009 Dec; 25(24):13737-41. PubMed ID: 19527041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recyclable Polymeric Thin Films for the Selective Detection and Separation of Picric Acid.
    Gupta M; Lee HI
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41717-41723. PubMed ID: 30398831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems.
    Liu P; Zhao X
    Biotechnol J; 2013 Jul; 8(7):847-54. PubMed ID: 23625874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.
    Nap RJ; Tagliazucchi M; Szleifer I
    J Chem Phys; 2014 Jan; 140(2):024910. PubMed ID: 24437914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loading behavior of {chitosan/hyaluronic acid}n layer-by-layer assembly films toward myoglobin: an electrochemical study.
    Lu H; Hu N
    J Phys Chem B; 2006 Nov; 110(47):23710-8. PubMed ID: 17125331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled pentacenequinone derivative for trace detection of picric acid.
    Bhalla V; Gupta A; Kumar M; Rao DS; Prasad SK
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):672-9. PubMed ID: 23317496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene on paper: a simple, low-cost chemical sensing platform.
    Kumar S; Kaushik S; Pratap R; Raghavan S
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2189-94. PubMed ID: 25597697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid.
    Ding A; Yang L; Zhang Y; Zhang G; Kong L; Zhang X; Tian Y; Tao X; Yang J
    Chemistry; 2014 Sep; 20(38):12215-22. PubMed ID: 25081497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboflavin based conjugated biomolecule for ultrasensitive detection of nitrophenols.
    Kalita B; Dutta P; Sen Sarma N
    RSC Adv; 2021 Aug; 11(45):28313-28319. PubMed ID: 35480746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.