These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25811536)

  • 1. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II).
    Das AK; Engelhard MH; Lense S; Roberts JA; Bullock RM
    Dalton Trans; 2015 Jul; 44(27):12225-33. PubMed ID: 25811536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrode as organolithium reagent: catalyst-free covalent attachment of electrochemically active species to an azide-terminated glassy carbon electrode surface.
    Das AK; Engelhard MH; Liu F; Bullock RM; Roberts JA
    Inorg Chem; 2013 Dec; 52(23):13674-84. PubMed ID: 24228741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition ("click") reaction by a silver tris(triazole)amine complex arises from copper impurities.
    Connell TU; Schieber C; Silvestri IP; White JM; Williams SJ; Donnelly PS
    Inorg Chem; 2014 Jul; 53(13):6503-11. PubMed ID: 24949519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-phase azide functionalization of carbon.
    Stenehjem ED; Ziatdinov VR; Stack TD; Chidsey CE
    J Am Chem Soc; 2013 Jan; 135(3):1110-6. PubMed ID: 23301920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights into catalytic h(2) oxidation by ni complexes containing a diphosphine ligand with a positioned amine base.
    Yang JY; Bullock RM; Shaw WJ; Twamley B; Fraze K; DuBois MR; DuBois DL
    J Am Chem Soc; 2009 Apr; 131(16):5935-45. PubMed ID: 19341269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins.
    Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D
    Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Following the azide-alkyne cycloaddition at the silica/solvent interface with sum frequency generation.
    Li Z; Weeraman CN; Gibbs-Davis JM
    Chemphyschem; 2014 Aug; 15(11):2247-51. PubMed ID: 24800780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High catalytic rates for hydrogen production using nickel electrocatalysts with seven-membered cyclic diphosphine ligands containing one pendant amine.
    Stewart MP; Ho MH; Wiese S; Lindstrom ML; Thogerson CE; Raugei S; Bullock RM; Helm ML
    J Am Chem Soc; 2013 Apr; 135(16):6033-46. PubMed ID: 23384205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ni(P(Ph)2N(C6H4X)2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates.
    Kilgore UJ; Roberts JA; Pool DH; Appel AM; Stewart MP; DuBois MR; Dougherty WG; Kassel WS; Bullock RM; DuBois DL
    J Am Chem Soc; 2011 Apr; 133(15):5861-72. PubMed ID: 21438562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tripodal Amine Ligands for Accelerating Cu-Catalyzed Azide-Alkyne Cycloaddition: Efficiency and Stability against Oxidation and Dissociation.
    Zhu Z; Chen H; Li S; Yang X; Bittner E; Cai C
    Catal Sci Technol; 2017; 7(12):2474-2485. PubMed ID: 29129990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand.
    Kilgore UJ; Stewart MP; Helm ML; Dougherty WG; Kassel WS; DuBois MR; DuBois DL; Bullock RM
    Inorg Chem; 2011 Nov; 50(21):10908-18. PubMed ID: 21999814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive Metal Complexes Covalently Attached to Conductive PEDOT Films: A Spectroelectrochemical Study.
    Rodríguez-Jiménez S; Bennington MS; Akbarinejad A; Tay EJ; Chan EWC; Wan Z; Abudayyeh AM; Baek P; Feltham HLC; Barker D; Gordon KC; Travas-Sejdic J; Brooker S
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1301-1313. PubMed ID: 33351602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.
    Aucagne V; Berna J; Crowley JD; Goldup SM; Hänni KD; Leigh DA; Lusby PJ; Ronaldson VE; Slawin AM; Viterisi A; Walker DB
    J Am Chem Soc; 2007 Oct; 129(39):11950-63. PubMed ID: 17845039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays.
    Wilson AD; Newell RH; McNevin MJ; Muckerman JT; Rakowski DuBois M; DuBois DL
    J Am Chem Soc; 2006 Jan; 128(1):358-66. PubMed ID: 16390166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-pot synthesis of constitutionally unsymmetrical rotaxanes using sequential Cu(I)-catalyzed azide-alkyne cycloadditions.
    Spruell JM; Dichtel WR; Heath JR; Stoddart JF
    Chemistry; 2008; 14(14):4168-77. PubMed ID: 18384025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydrogen-evolving Ni(P2N2)2 electrocatalyst covalently attached to a glassy carbon electrode: preparation, characterization, and catalysis. comparisons with the homogeneous analogue.
    Das AK; Engelhard MH; Bullock RM; Roberts JA
    Inorg Chem; 2014 Jul; 53(13):6875-85. PubMed ID: 24971843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tethering hydrophobic peptides to functionalized self-assembled monolayers on gold through two chemical linkers using the Huisgen cycloaddition.
    Gallardo IF; Webb LJ
    Langmuir; 2010 Dec; 26(24):18959-66. PubMed ID: 21087006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterically controlled functionalization of carbon surfaces with -C6H4CH2X (X = OSO2Me or N3) groups for surface attachment of redox-active molecules.
    Liu W; Tilley TD
    Langmuir; 2015 Jan; 31(3):1189-95. PubMed ID: 25549529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blue-light activated rapid polymerization for defect-free bulk Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) crosslinked networks.
    Shete AU; El-Zaatari BM; French JM; Kloxin CJ
    Chem Commun (Camb); 2016 Aug; 52(69):10574-7. PubMed ID: 27499057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach.
    Ciampi S; Böcking T; Kilian KA; James M; Harper JB; Gooding JJ
    Langmuir; 2007 Aug; 23(18):9320-9. PubMed ID: 17655337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.