These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25811733)
1. Antitubercular Nanocarrier Combination Therapy: Formulation Strategies and in Vitro Efficacy for Rifampicin and SQ641. D'Addio SM; Reddy VM; Liu Y; Sinko PJ; Einck L; Prud'homme RK Mol Pharm; 2015 May; 12(5):1554-63. PubMed ID: 25811733 [TBL] [Abstract][Full Text] [Related]
2. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Hakkimane SS; Shenoy VP; Gaonkar SL; Bairy I; Guru BR Int J Nanomedicine; 2018; 13():4303-4318. PubMed ID: 30087562 [TBL] [Abstract][Full Text] [Related]
3. Enhancing antimycobacterial activity of isoniazid and rifampicin incorporated norbornene nanoparticles. Kumarasingam K; Vincent M; Mane SR; Shunmugam R; Sivakumar S; Uma Devi KR Int J Mycobacteriol; 2018; 7(1):84-88. PubMed ID: 29516891 [TBL] [Abstract][Full Text] [Related]
4. SILA-421 activity in vitro against rifampicin-susceptible and rifampicin-resistant Mycobacterium tuberculosis, and in vivo in a murine tuberculosis model. de Knegt GJ; Bakker-Woudenberg IA; van Soolingen D; Aarnoutse R; Boeree MJ; de Steenwinkel JE Int J Antimicrob Agents; 2015 Jul; 46(1):66-72. PubMed ID: 25951996 [TBL] [Abstract][Full Text] [Related]
5. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Clemens DL; Lee BY; Xue M; Thomas CR; Meng H; Ferris D; Nel AE; Zink JI; Horwitz MA Antimicrob Agents Chemother; 2012 May; 56(5):2535-45. PubMed ID: 22354311 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. Rao M; Valentini D; Zumla A; Maeurer M Int J Infect Dis; 2018 Apr; 69():78-84. PubMed ID: 29501835 [TBL] [Abstract][Full Text] [Related]
8. [Fast identification of rifampicin-and isoniazid resistance of M. Tuberculosis strains by the "TB-biochip" test system]. Isakova ZhT Georgian Med News; 2008 May; (158):15-9. PubMed ID: 18560033 [TBL] [Abstract][Full Text] [Related]
9. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Pi J; Shen L; Shen H; Yang E; Wang W; Wang R; Huang D; Lee BS; Hu C; Chen C; Jin H; Cai J; Zeng G; Chen ZW Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109777. PubMed ID: 31349400 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy. de Knegt GJ; ten Kate MT; van Soolingen D; Aarnoutse R; Boeree MJ; Bakker-Woudenberg IA; de Steenwinkel JE Tuberculosis (Edinb); 2014 Dec; 94(6):701-7. PubMed ID: 25621361 [TBL] [Abstract][Full Text] [Related]
11. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. Ellis T; Chiappi M; García-Trenco A; Al-Ejji M; Sarkar S; Georgiou TK; Shaffer MSP; Tetley TD; Schwander S; Ryan MP; Porter AE ACS Nano; 2018 Jun; 12(6):5228-5240. PubMed ID: 29767993 [TBL] [Abstract][Full Text] [Related]
12. Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment. Cassano R; Trombino S; Ferrarelli T; Mauro MV; Giraldi C; Manconi M; Fadda AM; Picci N J Biomed Mater Res A; 2012 Feb; 100(2):536-42. PubMed ID: 22162280 [TBL] [Abstract][Full Text] [Related]
13. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Vibe CB; Fenaroli F; Pires D; Wilson SR; Bogoeva V; Kalluru R; Speth M; Anes E; Griffiths G; Hildahl J Nanotoxicology; 2016 Aug; 10(6):680-8. PubMed ID: 26573343 [TBL] [Abstract][Full Text] [Related]
14. Molecular characteristics of rifampin and isoniazid resistant Mycobacterium tuberculosis strains from Beijing, China. Jiao WW; Mokrousov I; Sun GZ; Li M; Liu JW; Narvskaya O; Shen AD Chin Med J (Engl); 2007 May; 120(9):814-9. PubMed ID: 17531124 [TBL] [Abstract][Full Text] [Related]
15. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. Choi SR; Britigan BE; Moran DM; Narayanasamy P PLoS One; 2017; 12(5):e0177987. PubMed ID: 28542623 [TBL] [Abstract][Full Text] [Related]
16. Current status of multidrug resistant tuberculosis in a tertiary care hospital of East Delhi. Sagar T; Singh NP; Kashyap B; Kaur IR J Postgrad Med; 2013; 59(3):173-6. PubMed ID: 24029192 [TBL] [Abstract][Full Text] [Related]
17. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. Chen P; Gearhart J; Protopopova M; Einck L; Nacy CA J Antimicrob Chemother; 2006 Aug; 58(2):332-7. PubMed ID: 16751637 [TBL] [Abstract][Full Text] [Related]
18. Combination of anti-tuberculosis drugs with vitamin C or NAC against different Staphylococcus aureus and Mycobacterium tuberculosis strains. Khameneh B; Fazly Bazzaz BS; Amani A; Rostami J; Vahdati-Mashhadian N Microb Pathog; 2016 Apr; 93():83-7. PubMed ID: 26602814 [TBL] [Abstract][Full Text] [Related]
19. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Booysen LL; Kalombo L; Brooks E; Hansen R; Gilliland J; Gruppo V; Lungenhofer P; Semete-Makokotlela B; Swai HS; Kotze AF; Lenaerts A; du Plessis LH Int J Pharm; 2013 Feb; 444(1-2):10-7. PubMed ID: 23357255 [TBL] [Abstract][Full Text] [Related]