These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25811843)

  • 1. Standoff detection of highly energetic materials using laser-induced thermal excitation of infrared emission.
    Galán-Freyle NJ; Pacheco-Londoño LC; Figueroa-Navedo AM; Hernandez-Rivera SP
    Appl Spectrosc; 2015 May; 69(5):535-44. PubMed ID: 25811843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates.
    Castro-Suarez JR; Pacheco-Londoño LC; Vélez-Reyes M; Diem M; Tague TJ; Hernandez-Rivera SP
    Appl Spectrosc; 2013 Feb; 67(2):181-6. PubMed ID: 23622437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of highly energetic materials on non-reflective substrates using quantum cascade laser spectroscopy.
    Castro-Suarez JR; Hidalgo-Santiago M; Hernández-Rivera SP
    Appl Spectrosc; 2015 Sep; 69(9):1023-35. PubMed ID: 26414522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity-Enhanced Fourier Transform Mid-Infrared Spectroscopy Using a Supercontinuum Laser Source.
    Zorin I; Kilgus J; Duswald K; Lendl B; Heise B; Brandstetter M
    Appl Spectrosc; 2020 Apr; 74(4):485-493. PubMed ID: 32096412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.
    Yang CS; Brown EE; Hommerich U; Jin F; Trivedi SB; Samuels AC; Snyder AP
    Appl Spectrosc; 2012 Dec; 66(12):1397-402. PubMed ID: 23231901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared detection of liquids on terrestrial surfaces by CO(2) laser heating.
    Carrieri AH
    Appl Opt; 1990 Nov; 29(33):4907-13. PubMed ID: 20577485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).
    Yang CS; Brown EE; Kumi-Barimah E; Hommerich UH; Jin F; Trivedi SB; Samuels AC; Snyder AP
    Appl Spectrosc; 2014; 68(2):226-31. PubMed ID: 24480279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.
    Momcilovic M; Kuzmanovic M; Rankovic D; Ciganovic J; Stoiljkovic M; Savovic J; Trtica M
    Appl Spectrosc; 2015 Apr; 69(4):419-29. PubMed ID: 25741748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standoff detection of explosive substances at distances of up to 150 m.
    Mukherjee A; Von der Porten S; Patel CK
    Appl Opt; 2010 Apr; 49(11):2072-8. PubMed ID: 20390007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Infrared Study of Tetryl, Dinitrotoluene, and Trinitrotoluene Compounds.
    Puiu A; Giubileo G; Cesaro SN; Bencivenni L
    Appl Spectrosc; 2015 Dec; 69(12):1472-86. PubMed ID: 26555761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond laser-induced breakdown spectroscopy of surface nitrate chemicals.
    Ahmido T; Ting A; Misra P
    Appl Opt; 2013 May; 52(13):3048-57. PubMed ID: 23669773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer.
    Cheng J; Lin H; Hu S; He S; Zhu Q; Kachanov A
    Appl Opt; 2000 May; 39(13):2221-9. PubMed ID: 18345128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.
    Weinstock BA; Guiney LM; Loose C
    Appl Spectrosc; 2012 Nov; 66(11):1311-9. PubMed ID: 23146187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-simultaneous in-line flue gas monitoring of NO and NO₂ emissions at a caloric power plant employing mid-IR laser spectroscopy.
    Reidl-Leuthner C; Viernstein A; Wieland K; Tomischko W; Sass L; Kinger G; Ofner J; Lendl B
    Anal Chem; 2014 Sep; 86(18):9058-64. PubMed ID: 25131684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of mid-infrared wavelength tunable laser in glucose determination].
    Yu SL; Li DC; Zhong H; Sun CY; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):972-6. PubMed ID: 23841410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ chemical analysis of geology samples by a rapid simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-infrared laser induced breakdown spectroscopy detection system at standoff distance.
    Yang CSC; Jin F; Trivedi S; Brown E; Hömmerich U; Nemes L; Samuels AC
    Opt Express; 2019 Jul; 27(14):19596-19614. PubMed ID: 31503717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.