These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25811934)

  • 1. Design and control of an active 1-DoF mechanism for knee rehabilitation.
    Naghavi N; Mahjoob MJ
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):588-94. PubMed ID: 25811934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study.
    Yepes JC; Portela MA; Saldarriaga ÁJ; Pérez VZ; Betancur MJ
    Biomed Eng Online; 2019 Jan; 18(1):3. PubMed ID: 30606192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitation device with variable resistance and intelligent control.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    Med Eng Phys; 2005 Apr; 27(3):249-55. PubMed ID: 15694609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.
    Miyake T; Kobayashi Y; Fujie MG; Sugano S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices.
    Fang J; Yuan J; Wang M; Xiao L; Yang J; Lin Z; Xu P; Hou L
    Soft Robot; 2020 Feb; 7(1):95-108. PubMed ID: 31566506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the assistive performance of an ankle exerciser using electromyographic signals.
    Saglia JA; Tsagarakis NG; Dai JS; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5854-8. PubMed ID: 21096923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee orthopaedic device how robotic technology can improve outcome in knee rehabilitation.
    Koller-Hodac A; Leonardo D; Walpen S; Felder D
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975347. PubMed ID: 22275551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.
    Galinski D; Sapin J; Dehez B
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650502. PubMed ID: 24187317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke.
    Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of knee braces during rehabilitation.
    Nelson KA
    Clin Sports Med; 1990 Oct; 9(4):799-811. PubMed ID: 2265438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation.
    Jihun Kim ; Jaehyo Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4243-4246. PubMed ID: 29060834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.