These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25811956)

  • 1. Costs of using "tiny targets" to control Glossina fuscipes fuscipes, a vector of gambiense sleeping sickness in Arua District of Uganda.
    Shaw AP; Tirados I; Mangwiro CT; Esterhuizen J; Lehane MJ; Torr SJ; Kovacic V
    PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003624. PubMed ID: 25811956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cost of tsetse control using 'Tiny Targets' in the sleeping sickness endemic forest area of Bonon in Côte d'Ivoire: Implications for comparing costs across different settings.
    Courtin F; Kaba D; Rayaisse JB; Solano P; Torr SJ; Shaw APM
    PLoS Negl Trop Dis; 2022 Jan; 16(1):e0010033. PubMed ID: 34986176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the impact of Tiny Targets in reducing the incidence of Gambian sleeping sickness in the North-west Uganda focus.
    Bessell PR; Esterhuizen J; Lehane MJ; Longbottom J; Mugenyi A; Selby R; Tirados I; Torr SJ; Waiswa C; Wamboga C; Hope A
    Parasit Vectors; 2021 Aug; 14(1):410. PubMed ID: 34407867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of high resolution maps of tsetse abundance to guide interventions against human African trypanosomiasis in northern Uganda.
    Stanton MC; Esterhuizen J; Tirados I; Betts H; Torr SJ
    Parasit Vectors; 2018 Jun; 11(1):340. PubMed ID: 29884213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad).
    Mahamat MH; Peka M; Rayaisse JB; Rock KS; Toko MA; Darnas J; Brahim GM; Alkatib AB; Yoni W; Tirados I; Courtin F; Brand SPC; Nersy C; Alfaroukh IO; Torr SJ; Lehane MJ; Solano P
    PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005792. PubMed ID: 28750007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treating cattle to protect people? Impact of footbath insecticide treatment on tsetse density in Chad.
    Ndeledje N; Bouyer J; Stachurski F; Grimaud P; Belem AM; Molélé Mbaïndingatoloum F; Bengaly Z; Oumar Alfaroukh I; Cecchi G; Lancelot R
    PLoS One; 2013; 8(6):e67580. PubMed ID: 23799148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelled impact of Tiny Targets on the distribution and abundance of riverine tsetse.
    Vale GA; Hargrove JW; Hope A; Torr SJ
    PLoS Negl Trop Dis; 2024 Apr; 18(4):e0011578. PubMed ID: 38626189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of human African trypanosomiasis in the Democratic Republic of the Congo.
    Tirados I; Hope A; Selby R; Mpembele F; Miaka EM; Boelaert M; Lehane MJ; Torr SJ; Stanton MC
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008270. PubMed ID: 33064783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of improved coloured targets to control riverine tsetse in East Africa: A Bayesian approach.
    Santer RD; Okal MN; Esterhuizen J; Torr SJ
    PLoS Negl Trop Dis; 2021 Jun; 15(6):e0009463. PubMed ID: 34153040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Community acceptance of tsetse control baits: a qualitative study in Arua District, North West Uganda.
    Kovacic V; Tirados I; Esterhuizen J; Mangwiro CT; Torr SJ; Lehane MJ; Smith H
    PLoS Negl Trop Dis; 2013; 7(12):e2579. PubMed ID: 24349593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for developing odour baits to control Glossina fuscipes spp., the major vector of human African trypanosomiasis.
    Omolo MO; Hassanali A; Mpiana S; Esterhuizen J; Lindh J; Lehane MJ; Solano P; Rayaisse JB; Vale GA; Torr SJ; Tirados I
    PLoS Negl Trop Dis; 2009; 3(5):e435. PubMed ID: 19434232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts.
    Tirados I; Esterhuizen J; Rayaisse JB; Diarrassouba A; Kaba D; Mpiana S; Vale GA; Solano P; Lehane MJ; Torr SJ
    PLoS Negl Trop Dis; 2011 Aug; 5(8):e1226. PubMed ID: 21829734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited impact of vector control on the population genetic structure of Glossina fuscipes fuscipes from the sleeping sickness focus of Maro, Chad.
    Ravel S; Ségard A; Mollo BG; Mahamat MH; Argiles-Herrero R; Bouyer J; Rayaisse JB; Solano P; Pèka M; Darnas J; Belem AMG; Yoni W; Noûs C; de Meeûs T
    Parasite; 2024; 31():13. PubMed ID: 38450719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control.
    Kato AB; Hyseni C; Okedi LM; Ouma JO; Aksoy S; Caccone A; Masembe C
    Parasit Vectors; 2015 Jul; 8():385. PubMed ID: 26197892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda.
    Opiro R; Saarman NP; Echodu R; Opiyo EA; Dion K; Halyard A; Aksoy S; Caccone A
    Parasit Vectors; 2016 May; 9():258. PubMed ID: 27141947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conflict of interest: use of pyrethroids and amidines against tsetse and ticks in zoonotic sleeping sickness endemic areas of Uganda.
    Bardosh K; Waiswa C; Welburn SC
    Parasit Vectors; 2013 Jul; 6():204. PubMed ID: 23841963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of community-based control of tsetse: A pilot project using Tiny Targets in the Democratic Republic of Congo.
    Vander Kelen C; Mpanya A; Boelaert M; Miaka E; Pérez Chacón D; Pulford J; Selby R; Torr SJ
    PLoS Negl Trop Dis; 2020 Sep; 14(9):e0008696. PubMed ID: 32970689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatial genetics approach to inform vector control of tsetse flies (
    Saarman N; Burak M; Opiro R; Hyseni C; Echodu R; Dion K; Opiyo EA; Dunn AW; Amatulli G; Aksoy S; Caccone A
    Ecol Evol; 2018 Jun; 8(11):5336-5354. PubMed ID: 29938057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices.
    Santer RD
    PLoS Negl Trop Dis; 2017 Mar; 11(3):e0005448. PubMed ID: 28306721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Tsetse Flies and Ticks Using Insecticide Treatment of Cattle in Tororo District Uganda: Cost Benefit Analysis.
    Okello WO; MacLeod ET; Muhanguzi D; Waiswa C; Welburn SC
    Front Vet Sci; 2021; 8():616865. PubMed ID: 33829051
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.