These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25811967)

  • 21. High-throughput, high-resolution Echelle deep-UV Raman spectrometer.
    Bykov SV; Sharma B; Asher SA
    Appl Spectrosc; 2013 Aug; 67(8):873-83. PubMed ID: 23876726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.
    Bykov SV; Mao M; Gares KL; Asher SA
    Appl Spectrosc; 2015 Aug; 69(8):895-901. PubMed ID: 26162998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep-ultraviolet Raman microspectroscopy: characterization of wide-gap semiconductors.
    Nakashima S; Okumura H; Yamamoto T; Shimidzu R
    Appl Spectrosc; 2004 Feb; 58(2):224-9. PubMed ID: 17140482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demonstration of a compact deep UV Raman spatial heterodyne spectrometer for biologics analysis.
    Foster M; Brooks W; Jahn P; Hedberg J; Andersson A; Ashton AL
    J Biophotonics; 2022 Jul; 15(7):e202200021. PubMed ID: 35452175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband, high-resolution Raman observations from a double-echelle spatial heterodyne Raman spectrometer.
    Qiu J; Qi X; Li X; Xu W; Tang Y; Ma Z; Bayanheshig
    Appl Opt; 2018 Oct; 57(30):8936-8941. PubMed ID: 30461879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-aperture UV (250~400 nm) imaging spectrometer based on a solid Sagnac interferometer.
    Yang W; Liao N; He S; Cheng H; Li H
    Opt Express; 2018 Dec; 26(26):34503-34514. PubMed ID: 30650873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts.
    Tian H; Wachs IE; Briand LE
    J Phys Chem B; 2005 Dec; 109(49):23491-9. PubMed ID: 16375323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing Data Reduction Procedures in Spatial Heterodyne Raman Spectroscopy with Applications to Planetary Surface Analogs.
    Egan MJ; Angel SM; Sharma SK
    Appl Spectrosc; 2018 Jun; 72(6):933-942. PubMed ID: 29381083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-ultraviolet (UV) resonance raman spectroscopy as a tool for quality control of formulated therapeutic proteins.
    Arzhantsev S; Vilker V; Kauffman J
    Appl Spectrosc; 2012 Nov; 66(11):1262-8. PubMed ID: 23146181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microscopic raman spectral imaging of oily core].
    Huang QS; Yu ZX; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2880-4. PubMed ID: 19248505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure.
    Qiu J; Qi X; Li X; Tang Y; Lantu J; Mi X; Bayan H
    Opt Express; 2018 Oct; 26(20):26106-26119. PubMed ID: 30469702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet resonance Raman spectroscopy of explosives in solution and the solid state.
    Emmons ED; Tripathi A; Guicheteau JA; Fountain AW; Christesen SD
    J Phys Chem A; 2013 May; 117(20):4158-66. PubMed ID: 23656503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites.
    Frosch T; Tarcea N; Schmitt M; Thiele H; Langenhorst F; Popp J
    Anal Chem; 2007 Feb; 79(3):1101-8. PubMed ID: 17263342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis and Classification of Liquid Samples Using Spatial Heterodyne Raman Spectroscopy.
    Gojani AB; Palásti DJ; Paul A; Galbács G; Gornushkin IB
    Appl Spectrosc; 2019 Dec; 73(12):1409-1419. PubMed ID: 31271293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer.
    Powell I; Cheben P
    Appl Opt; 2006 Dec; 45(36):9079-86. PubMed ID: 17151746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies.
    Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.