These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25812101)
1. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment. Dzakpasu M; Wang X; Zheng Y; Ge Y; Xiong J; Zhao Y Water Sci Technol; 2015; 71(6):904-12. PubMed ID: 25812101 [TBL] [Abstract][Full Text] [Related]
2. Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China. Zheng Y; Wang XC; Dzakpasu M; Ge Y; Zhao Y; Xiong J Environ Sci Pollut Res Int; 2016 Jan; 23(1):447-54. PubMed ID: 26310702 [TBL] [Abstract][Full Text] [Related]
3. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. Toet S; Bouwman M; Cevaal A; Verhoeven JT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271 [TBL] [Abstract][Full Text] [Related]
4. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Ge Y; Wang X; Zheng Y; Dzakpasu M; Zhao Y; Xiong J Environ Sci Pollut Res Int; 2015 Sep; 22(17):12982-91. PubMed ID: 25916476 [TBL] [Abstract][Full Text] [Related]
5. [Optimization of nitrogen and phosphorus removal in vertical subsurface flow constructed wetlands by using polypropylene pellet as part of substrate]. Tang XQ; Li JZ; Li XJ; Liu XG; Huang SL Huan Jing Ke Xue; 2008 May; 29(5):1284-8. PubMed ID: 18624194 [TBL] [Abstract][Full Text] [Related]
6. Influence of earthworm Eisenia fetida on removal efficiency of N and P in vertical flow constructed wetland. Xu D; Li Y; Howard A Environ Sci Pollut Res Int; 2013 Sep; 20(9):5922-9. PubMed ID: 23729029 [TBL] [Abstract][Full Text] [Related]
7. Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Zheng Y; Wang X; Dzakpasu M; Zhao Y; Ngo HH; Guo W; Ge Y; Xiong J Bioresour Technol; 2016 May; 207():134-41. PubMed ID: 26874442 [TBL] [Abstract][Full Text] [Related]
8. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent. da Costa JF; Martins WL; Seidl M; von Sperling M Water Sci Technol; 2015; 71(7):1004-10. PubMed ID: 25860702 [TBL] [Abstract][Full Text] [Related]
9. Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands. Meng P; Hu W; Pei H; Hou Q; Ji Y Environ Technol; 2014; 35(5-8):808-16. PubMed ID: 24645463 [TBL] [Abstract][Full Text] [Related]
10. Effect of plant species on water quality at the outlet of a sludge treatment wetland. Gagnon V; Chazarenc F; Kõiv M; Brisson J Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383 [TBL] [Abstract][Full Text] [Related]
11. Contaminant removal from low-concentration polluted river water by the bio-rack wetlands. Wang J; Zhang L; Lu S; Jin X; Gan S J Environ Sci (China); 2012; 24(6):1006-13. PubMed ID: 23505867 [TBL] [Abstract][Full Text] [Related]
12. [Seasonal dynamics of nitrogen- and phosphorus absorption efficiency of wetland plants in Minjiang River estuary]. Zhang WL; Zeng CS; Zhang LH; Wang WQ; Lin Y; Ai JQ Ying Yong Sheng Tai Xue Bao; 2009 Jun; 20(6):1317-22. PubMed ID: 19795639 [TBL] [Abstract][Full Text] [Related]
13. Removal of nitrogen and phosphorus by aboveground biomass of Nikolić L; Maksimović I; Džigurski D; Putnik-Delić M; Ljevnaić-Mašić B Int J Phytoremediation; 2023; 25(4):483-492. PubMed ID: 35786062 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of long-term phosphorus uptake by Carrillo V; Collins C; Brisson J; Vidal G Int J Phytoremediation; 2022; 24(6):610-621. PubMed ID: 34382468 [TBL] [Abstract][Full Text] [Related]
15. Hybrid constructed wetlands for highly polluted river water treatment and comparison of surface- and subsurface-flow cells. Zheng Y; Wang X; Xiong J; Liu Y; Zhao Y J Environ Sci (China); 2014 Apr; 26(4):749-56. PubMed ID: 25079404 [TBL] [Abstract][Full Text] [Related]
16. [Characteristics of microbial biomass in subsurface constructed wetland treating eutrophic water]. Fu RB; Zhu YP; Yang HZ; Gu GW Huan Jing Ke Xue; 2008 Oct; 29(10):2754-9. PubMed ID: 19143366 [TBL] [Abstract][Full Text] [Related]
17. [Treatment of marine-aquaculture effluent by the multi-soil-layer (MSL) system and subsurface flow constructed wetland]. Song Y; Huang YT; Ge C; Zhang H; Chen X; Zhang ZJ; Luo AC Huan Jing Ke Xue; 2014 Sep; 35(9):3436-42. PubMed ID: 25518662 [TBL] [Abstract][Full Text] [Related]
18. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments. Bateganya NL; Kazibwe A; Langergraber G; Okot-Okumu J; Hein T Environ Technol; 2016; 37(8):960-74. PubMed ID: 26387557 [TBL] [Abstract][Full Text] [Related]
19. Effects of plants competition on critical bacteria selection and pollutants dynamics in a long-term polyculture constructed wetland. Zheng Y; Yang D; Dzakpasu M; Yang Q; Liu Y; Zhang H; Zhang L; Wang XC; Zhao Y Bioresour Technol; 2020 Nov; 316():123927. PubMed ID: 32750641 [TBL] [Abstract][Full Text] [Related]
20. Comparing the efficiency of Cyperus alternifolius and Phragmites australis in municipal wastewater treatment by subsurface constructed wetland. Shahi DH; Eslami H; Ehrampoosh MH; Ebrahimi A; Ghaneian MT; Ayatollah S; Mozayan MR Pak J Biol Sci; 2013 Apr; 16(8):379-84. PubMed ID: 24494519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]