BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25813024)

  • 1. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments.
    Vogt F; White L
    Anal Chim Acta; 2015 Mar; 867():18-28. PubMed ID: 25813024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.
    Ogburn ZL; Vogt F
    Appl Spectrosc; 2018 Mar; 72(3):366-377. PubMed ID: 28777003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae as embedded environmental monitors.
    Ogburn ZL; Vogt F
    Anal Chim Acta; 2017 Feb; 954():1-13. PubMed ID: 28081803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the transformation of atmospheric CO
    Hasan MF; Vogt F
    Analyst; 2017 Oct; 142(21):4089-4098. PubMed ID: 29018852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR-FTIR Spectroscopy.
    Ferro L; Gojkovic Z; Gorzsás A; Funk C
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31492012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks.
    Burford MA; Revill AT; Smith J; Clementson L
    Mar Pollut Bull; 2012 Dec; 64(12):2671-80. PubMed ID: 23122766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy.
    Mayers JJ; Flynn KJ; Shields RJ
    Bioresour Technol; 2013 Nov; 148():215-20. PubMed ID: 24050924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term adaptive response to high-frequency light signals in the unicellular photosynthetic eukaryote Dunaliella salina.
    Combe C; Hartmann P; Rabouille S; Talec A; Bernard O; Sciandra A
    Biotechnol Bioeng; 2015 Jun; 112(6):1111-21. PubMed ID: 25564984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae.
    Wagner H; Liu Z; Langner U; Stehfest K; Wilhelm C
    J Biophotonics; 2010 Aug; 3(8-9):557-66. PubMed ID: 20503222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of zinc on microalgal biofilms in intertidal and subtidal habitats.
    Mayer-Pinto M; Coleman RA; Underwood AJ; Tolhurst TJ
    Biofouling; 2011 Aug; 27(7):721-7. PubMed ID: 21756195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity.
    Uggetti E; Sialve B; Latrille E; Steyer JP
    Bioresour Technol; 2014; 152():437-43. PubMed ID: 24316486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.
    Meng Y; Yao C; Xue S; Yang H
    Bioresour Technol; 2014 Jan; 151():347-54. PubMed ID: 24262844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta.
    Chen M; Tang H; Ma H; Holland TC; Ng KY; Salley SO
    Bioresour Technol; 2011 Jan; 102(2):1649-55. PubMed ID: 20947341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.
    Yoo C; La HJ; Kim SC; Oh HM
    Biotechnol Bioeng; 2015 Feb; 112(2):288-96. PubMed ID: 25182602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.
    Farrelly DJ; Brennan L; Everard CD; McDonnell KP
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3157-64. PubMed ID: 24162085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy.
    Dao L; Beardall J; Heraud P
    Aquat Toxicol; 2017 Jul; 188():33-42. PubMed ID: 28445789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of heterotrophic algal cultures.
    De la Hoz Siegler H; Ben-Zvi A; Burrell RE; McCaffrey WC
    Bioresour Technol; 2011 May; 102(10):5764-74. PubMed ID: 21377360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of microalgae to a gradient of continuous petroleum contamination.
    Carrera-Martinez D; Mateos-Sanz A; Lopez-Rodas V; Costas E
    Aquat Toxicol; 2011 Jan; 101(2):342-50. PubMed ID: 21216344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of physical and chemical properties of HTSXT-FTIR samples on the quality of prediction models developed to determine absolute concentrations of total proteins, carbohydrates and triglycerides: a preliminary study on the determination of their absolute concentrations in fresh microalgal biomass.
    Serrano León E; Coat R; Moutel B; Pruvost J; Legrand J; Gonçalves O
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2371-80. PubMed ID: 24861315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.