These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural optimization of porous media for fast and controlled capillary flows. Shou D; Fan J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053021. PubMed ID: 26066262 [TBL] [Abstract][Full Text] [Related]
4. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Cha KJ; Kim DS Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383 [TBL] [Abstract][Full Text] [Related]
5. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics. Hassan SU; Zhang X Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641 [TBL] [Abstract][Full Text] [Related]
9. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries. Ma B Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations. Wang Y; Ye D; Zhu X; Yang Y; Qin C; Chen R; Liao Q Langmuir; 2022 Mar; 38(8):2677-2685. PubMed ID: 35168321 [TBL] [Abstract][Full Text] [Related]
12. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943 [TBL] [Abstract][Full Text] [Related]
13. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection. He F; Grimes J; Alcaine SD; Nugen SR Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901 [TBL] [Abstract][Full Text] [Related]
14. Optimizing pressure-driven pulsatile flows in microfluidic devices. Recktenwald SM; Wagner C; John T Lab Chip; 2021 Jun; 21(13):2605-2613. PubMed ID: 34008605 [TBL] [Abstract][Full Text] [Related]
15. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958 [TBL] [Abstract][Full Text] [Related]
16. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics. Balsam J; Bruck HA; Rasooly A Methods Mol Biol; 2015; 1256():247-58. PubMed ID: 25626544 [TBL] [Abstract][Full Text] [Related]
17. A study on the condition for differential electrophoretic transport at a channel entrance. Pacheco JR; Chen KP; Hayes MA Electrophoresis; 2007 Apr; 28(7):1027-35. PubMed ID: 17311244 [TBL] [Abstract][Full Text] [Related]
18. Numerical and experimental characterization of a novel modular passive micromixer. Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456 [TBL] [Abstract][Full Text] [Related]
19. Design of pressure-driven microfluidic networks using electric circuit analogy. Oh KW; Lee K; Ahn B; Furlani EP Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505 [TBL] [Abstract][Full Text] [Related]
20. Synchronization and control of capillary flows in rectangular microchannel with spacers. Song K; Zhang L; Zhou Z; Huang R; Zheng X Biomicrofluidics; 2020 Jul; 14(4):044105. PubMed ID: 32699565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]