These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25813489)

  • 41. Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources.
    Marsalek J; Rochfort Q
    J Toxicol Environ Health A; 2004 Oct 22-Nov 26; 67(20-22):1765-77. PubMed ID: 15371215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring bacterial indicators of water quality in a tidally influenced delta: A Sisyphean pursuit.
    Partyka ML; Bond RF; Chase JA; Atwill ER
    Sci Total Environ; 2017 Feb; 578():346-356. PubMed ID: 27842967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining modeling and monitoring to study fecal contamination in a small rural catchment.
    Bougeard M; Le Saux JC; Teillon A; Belloir J; Le Mennec C; Thome S; Durand G; Pommepuy M
    J Water Health; 2011 Sep; 9(3):467-82. PubMed ID: 21976194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of in-stream reservoirs to reduce bacterial contamination of rural watersheds.
    Gannon VP; Duke GD; Thomas JE; Vanleeuwen J; Byrne J; Johnson D; Kienzle SW; Little J; Graham T; Selinger B
    Sci Total Environ; 2005 Sep; 348(1-3):19-31. PubMed ID: 16162311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PCR detection of pathogenic viruses in southern California urban rivers.
    Jiang SC; Chu W
    J Appl Microbiol; 2004; 97(1):17-28. PubMed ID: 15186438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tidal and longitudinal variation of faecal indicator bacteria in an estuarine creek in south-east Queensland, Australia.
    Mill A; Schlacher T; Katouli M
    Mar Pollut Bull; 2006 Aug; 52(8):881-91. PubMed ID: 16406429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Bayesian approach for estimating bacterial nonpoint source loading in an estuary with limited observations.
    Shen J; Zhao Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1574-84. PubMed ID: 20183516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An assessment of fecal indicator bacteria-based water quality standards.
    Gronewold AD; Borsuk ME; Wolpert RL; Reckhow KH
    Environ Sci Technol; 2008 Jul; 42(13):4676-82. PubMed ID: 18677990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Respective contributions of point and non-point sources of E. coli and enterococci in a large urbanized watershed (the Seine river, France).
    Garcia-Armisen T; Servais P
    J Environ Manage; 2007 Mar; 82(4):512-8. PubMed ID: 16725253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Storm effects on regional beach water quality along the southern California shoreline.
    Noble RT; Weisberg SB; Leecaster MK; McGee CD; Dorsey JH; Vainik P; Orozco-Borbón V
    J Water Health; 2003 Mar; 1(1):23-31. PubMed ID: 15384270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers--is it feasible?
    Wang D; Farnleitner AH; Field KG; Green HC; Shanks OC; Boehm AB
    Water Res; 2013 Nov; 47(18):6849-61. PubMed ID: 23890872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of changing land use on the microbial water quality of tidal creeks.
    DiDonato GT; Stewart JR; Sanger DM; Robinson BJ; Thompson BC; Holland AF; Van Dolah RF
    Mar Pollut Bull; 2009 Jan; 58(1):97-106. PubMed ID: 18922549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California.
    Ferguson DM; Moore DF; Getrich MA; Zhowandai MH
    J Appl Microbiol; 2005; 99(3):598-608. PubMed ID: 16108802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dry and wet weather microbial characterization of the Chicago area waterway system.
    Rijal G; Petropoulou C; Tolson JK; DeFlaun M; Gerba C; Gore R; Glymph T; Granato T; O'Connor C; Kollias L; Lanyon R
    Water Sci Technol; 2009; 60(7):1847-55. PubMed ID: 19809148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply.
    Rowny JG; Stewart JR
    Water Res; 2012 Nov; 46(18):6143-53. PubMed ID: 23021518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bayesian meta-analysis to synthesize decay rate constant estimates for common fecal indicator bacteria.
    Brooks LE; Field KG
    Water Res; 2016 Nov; 104():262-271. PubMed ID: 27543910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution and persistence of Escherichia coli and Enterococci in stream bed and bank sediments from two urban streams in Houston, TX.
    Brinkmeyer R; Amon RM; Schwarz JR; Saxton T; Roberts D; Harrison S; Ellis N; Fox J; DiGuardi K; Hochman M; Duan S; Stein R; Elliott C
    Sci Total Environ; 2015 Jan; 502():650-8. PubMed ID: 25305326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Developing a public information and engagement portal of urban waterways with real-time monitoring and modeling.
    Cochrane TA; Wicke D; O'Sullivan A
    Water Sci Technol; 2011; 63(2):248-54. PubMed ID: 21252427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system.
    Liu WC; Chan WT; Young CC
    Sci Total Environ; 2015 Jan; 502():632-40. PubMed ID: 25302451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.