These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25813671)

  • 21. Reactive oxygen species-producing site in hydrogen peroxide-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization.
    Ogawa Y; Kobayashi T; Nishioka A; Kariya S; Ohnishi T; Hamasato S; Seguchi H; Yoshida S
    Int J Mol Med; 2004 Mar; 13(3):383-8. PubMed ID: 14767567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: involvement of reactive oxygen species and tumor necrosis factor alpha.
    Dash SK; Ghosh T; Roy S; Chattopadhyay S; Das D
    J Appl Toxicol; 2014 Nov; 34(11):1130-44. PubMed ID: 24477783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells.
    Setyawati MI; Yuan X; Xie J; Leong DT
    Biomaterials; 2014 Aug; 35(25):6707-15. PubMed ID: 24881025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.
    Culcasi M; Benameur L; Mercier A; Lucchesi C; Rahmouni H; Asteian A; Casano G; Botta A; Kovacic H; Pietri S
    Chem Biol Interact; 2012 Sep; 199(3):161-76. PubMed ID: 22940227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.
    He W; Zhou YT; Wamer WG; Hu X; Wu X; Zheng Z; Boudreau MD; Yin JJ
    Biomaterials; 2013 Jan; 34(3):765-73. PubMed ID: 23103160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy.
    Wang M; Sun S; Neufeld CI; Perez-Ramirez B; Xu Q
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13444-8. PubMed ID: 25287050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Acidity-Unlocked Magnetic Nanoplatform Enables Self-Boosting ROS Generation through Upregulation of Lactate for Imaging-Guided Highly Specific Chemodynamic Therapy.
    Shi L; Wang Y; Zhang C; Zhao Y; Lu C; Yin B; Yang Y; Gong X; Teng L; Liu Y; Zhang X; Song G
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9562-9572. PubMed ID: 33590957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles.
    Li W; Zhao L; Wei T; Zhao Y; Chen C
    Biomaterials; 2011 Jun; 32(16):4030-41. PubMed ID: 21371748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity.
    Cao GJ; Chen Y; Chen X; Weng P; Lin RG
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(1):14-25. PubMed ID: 30601677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species.
    Shen Y; Zhang Y; Zhang X; Zhou X; Teng X; Yan M; Bi H
    Nanoscale; 2015 Feb; 7(7):2941-50. PubMed ID: 25587910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles.
    Hamasaki T; Kashiwagi T; Imada T; Nakamichi N; Aramaki S; Toh K; Morisawa S; Shimakoshi H; Hisaeda Y; Shirahata S
    Langmuir; 2008 Jul; 24(14):7354-64. PubMed ID: 18553993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation.
    Gupte A; Mumper RJ
    J Inorg Biochem; 2007 Apr; 101(4):594-602. PubMed ID: 17275091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants.
    Yang XJ; Xu XM; Xu J; Han YF
    J Am Chem Soc; 2013 Oct; 135(43):16058-61. PubMed ID: 24124647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release.
    Hu X; Wang Y; Peng B
    Chem Asian J; 2014 Jan; 9(1):319-27. PubMed ID: 24115568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The abilities of selenium dioxide and selenite ion to coordinate DNA-bound metal ions and decrease oxidative DNA damage.
    Hart WE; Marczak SP; Kneller AR; French RA; Morris DL
    J Inorg Biochem; 2013 Aug; 125():1-8. PubMed ID: 23628661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.
    Lee H; Lee HJ; Sedlak DL; Lee C
    Chemosphere; 2013 Jul; 92(6):652-8. PubMed ID: 23433935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xanthine oxidase-generated hydrogen peroxide is a consequence, not a mediator of cell death.
    Czupryna J; Tsourkas A
    FEBS J; 2012 Mar; 279(5):844-55. PubMed ID: 22230240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of intracellular free radicals in guinea pig airway epithelium during in vitro exposure to ozone.
    Chen LC; Qu Q
    Toxicol Appl Pharmacol; 1997 Mar; 143(1):96-101. PubMed ID: 9073597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells.
    Avalos A; Haza AI; Mateo D; Morales P
    J Appl Toxicol; 2014 Apr; 34(4):413-23. PubMed ID: 24243578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced hydrogen formation during the catalytic decomposition of H2O2 on metal oxide surfaces in the presence of HO radical scavengers.
    Lousada CM; LaVerne JA; Jonsson M
    Phys Chem Chem Phys; 2013 Aug; 15(30):12674-9. PubMed ID: 23793372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.