These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25813738)

  • 41. A fresh look at saccadic trajectories and task irrelevant stimuli: Social relevance matters.
    Laidlaw KE; Badiudeen TA; Zhu MJ; Kingstone A
    Vision Res; 2015 Jun; 111(Pt A):82-90. PubMed ID: 25906682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brain morphological changes and functional neuroanatomy related to cognitive and emotional distractors during working memory maintenance in post-traumatic stress disorder.
    Kim GW; Park JI; Yang JC
    Brain Res Bull; 2024 Jun; 211():110946. PubMed ID: 38614407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Individual differences in working memory capacity and distractor processing: possible contribution of top-down inhibitory control.
    Minamoto T; Osaka M; Osaka N
    Brain Res; 2010 Jun; 1335():63-73. PubMed ID: 20381462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Where have we gone wrong? Perceptual load does not affect selective attention.
    Benoni H; Tsal Y
    Vision Res; 2010 Jun; 50(13):1292-8. PubMed ID: 20430048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The impact of visual working memory capacity on the filtering efficiency of emotional face distractors.
    Ye C; Xu Q; Liu Q; Cong F; Saariluoma P; Ristaniemi T; Astikainen P
    Biol Psychol; 2018 Oct; 138():63-72. PubMed ID: 30125615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of perceptual load in processing distractor faces.
    Lavie N; Ro T; Russell C
    Psychol Sci; 2003 Sep; 14(5):510-5. PubMed ID: 12930485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concurrent working memory load can facilitate selective attention: evidence for specialized load.
    Park S; Kim MS; Chun MM
    J Exp Psychol Hum Percept Perform; 2007 Oct; 33(5):1062-75. PubMed ID: 17924807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emotion-attention interactions in recognition memory for distractor faces.
    Srinivasan N; Gupta R
    Emotion; 2010 Apr; 10(2):207-15. PubMed ID: 20364896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Separating the effects of visual working memory load and attentional zoom on selective attention.
    Lee H; Jeong SK
    J Exp Psychol Hum Percept Perform; 2020 May; 46(5):502-511. PubMed ID: 32162967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The attentional boost effect really is a boost: evidence from a new baseline.
    Swallow KM; Jiang YV
    Atten Percept Psychophys; 2014 Jul; 76(5):1298-307. PubMed ID: 24806406
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The cued recognition task: dissociating the abrupt onset effect from the social and arrow cueing effect.
    Xu B; Tanaka JW
    Atten Percept Psychophys; 2015 Jan; 77(1):97-110. PubMed ID: 25190323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting moment-to-moment attentional state.
    Rosenberg MD; Finn ES; Constable RT; Chun MM
    Neuroimage; 2015 Jul; 114():249-56. PubMed ID: 25800207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of concurrent working memory load on distractor and conflict processing in a name-face Stroop task.
    Jongen EM; Jonkman LM
    Psychophysiology; 2011 Jan; 48(1):31-43. PubMed ID: 20525010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recognition memory for distractor faces depends on attentional load at exposure.
    Jenkins R; Lavie N; Driver J
    Psychon Bull Rev; 2005 Apr; 12(2):314-20. PubMed ID: 16082812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of working memory in visual selective attention.
    de Fockert JW; Rees G; Frith CD; Lavie N
    Science; 2001 Mar; 291(5509):1803-6. PubMed ID: 11230699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Working memory load modulates distractor competition in primary visual cortex.
    Kelley TA; Lavie N
    Cereb Cortex; 2011 Mar; 21(3):659-65. PubMed ID: 20699229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High perceptual load makes everybody equal: eliminating individual differences in distractibility with load.
    Forster S; Lavie N
    Psychol Sci; 2007 May; 18(5):377-81. PubMed ID: 17576274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparison of bilateral versus unilateral target and distractor presentation in the remote distractor paradigm.
    Benson V
    Exp Psychol; 2008; 55(5):334-41. PubMed ID: 25116301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Top-down control of attention under varying task loads.
    Jo S; Kim JY; Han SW
    Acta Psychol (Amst); 2021 May; 216():103310. PubMed ID: 33892264
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distractor probability changes the shape of the attentional template.
    Geng JJ; DiQuattro NE; Helm J
    J Exp Psychol Hum Percept Perform; 2017 Dec; 43(12):1993-2007. PubMed ID: 28425732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.