These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 25813965)
1. Natural background groundwater composition in the Azores archipelago (Portugal): a hydrogeochemical study and threshold value determination. Cruz JV; Andrade C Sci Total Environ; 2015 Jul; 520():127-35. PubMed ID: 25813965 [TBL] [Abstract][Full Text] [Related]
2. Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal). Cordeiro S; Coutinho R; Cruz JV Sci Total Environ; 2012 Aug; 432():23-36. PubMed ID: 22705903 [TBL] [Abstract][Full Text] [Related]
3. Spring geochemistry in an active volcanic environment (São Miguel, Azores): source and fluxes of inorganic solutes. Freire P; Andrade C; Coutinho R; Cruz JV Sci Total Environ; 2014 Jan; 466-467():475-89. PubMed ID: 23933431 [TBL] [Abstract][Full Text] [Related]
4. Fluvial geochemistry in São Miguel Island (Azores, Portugal): source and fluxes of inorganic solutes in an active volcanic environment. Freire P; Andrade C; Coutinho R; Cruz JV Sci Total Environ; 2013 Jun; 454-455():154-69. PubMed ID: 23542489 [TBL] [Abstract][Full Text] [Related]
5. Application of stable isotopes (δ³⁴S-SO₄, δ¹⁸O-SO₄, δ¹⁵N-NO ₃, δ¹⁸O-NO ₃) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain). Urresti-Estala B; Vadillo-Pérez I; Jiménez-Gavilán P; Soler A; Sánchez-García D; Carrasco-Cantos F Sci Total Environ; 2015 Feb; 506-507():46-57. PubMed ID: 25460938 [TBL] [Abstract][Full Text] [Related]
6. Source apportionment and natural background levels of major ions in shallow groundwater using multivariate statistical method: A case study in Huaibei Plain, China. Chen K; Liu Q; Peng W; Liu X J Environ Manage; 2022 Jan; 301():113806. PubMed ID: 34731958 [TBL] [Abstract][Full Text] [Related]
7. Diffuse CO Andrade C; Cruz JV; Viveiros F; Coutinho R Environ Pollut; 2021 Jan; 268(Pt A):115624. PubMed ID: 33120347 [TBL] [Abstract][Full Text] [Related]
8. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Hinsby K; Condesso de Melo MT; Dahl M Sci Total Environ; 2008 Aug; 401(1-3):1-20. PubMed ID: 18486193 [TBL] [Abstract][Full Text] [Related]
9. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
10. The hydrochemistry of groundwater in the Densu River Basin, Ghana. Fianko JR; Adomako D; Osae S; Ganyaglo S; Kortatsi BK; Tay CK; Glover ET Environ Monit Assess; 2010 Aug; 167(1-4):663-74. PubMed ID: 19629737 [TBL] [Abstract][Full Text] [Related]
11. BRIDGE methodology-based quality standards to assess aquifer chemical status in the southwest Bengal Basin, Bangladesh. Islam MM; Marandi A; Zahid A; Rabeya I; Fatema S Environ Monit Assess; 2023 Jan; 195(2):281. PubMed ID: 36622483 [TBL] [Abstract][Full Text] [Related]
12. Groundwater quality assessment of the Limnos Island Volcanic Aquifers, Greece. Panagopoulos G; Panagiotaras D; Giannoulopoulos P Water Environ Res; 2013 May; 85(5):422-33. PubMed ID: 23789572 [TBL] [Abstract][Full Text] [Related]
13. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Koh DC; Mayer B; Lee KS; Ko KS J Contam Hydrol; 2010 Oct; 118(1-2):62-78. PubMed ID: 20828864 [TBL] [Abstract][Full Text] [Related]
14. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Molinari A; Guadagnini L; Marcaccio M; Guadagnini A Sci Total Environ; 2012 May; 425():9-19. PubMed ID: 22482783 [TBL] [Abstract][Full Text] [Related]
15. A double pre-selection method for natural background levels assessment in coastal groundwater bodies. Parrone D; Frollini E; Masciale R; Melita M; Passarella G; Preziosi E; Ghergo S Environ Pollut; 2022 Nov; 313():120076. PubMed ID: 36058317 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of natural background levels of high mountain karst aquifers in complex hydrogeological settings. A Gaussian mixture model approach in the Port del Comte (SE, Pyrenees) case study. Herms I; Jódar J; Soler A; Lambán LJ; Custodio E; Núñez JA; Arnó G; Ortego MI; Parcerisa D; Jorge J Sci Total Environ; 2021 Feb; 756():143864. PubMed ID: 33293084 [TBL] [Abstract][Full Text] [Related]
17. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China. Wu Y; Wang Y Environ Sci Process Impacts; 2014 May; 16(6):1469-79. PubMed ID: 24737419 [TBL] [Abstract][Full Text] [Related]
18. Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Jalali M Environ Monit Assess; 2010 Jul; 166(1-4):359-69. PubMed ID: 19496011 [TBL] [Abstract][Full Text] [Related]
20. Morphometry of the epidermis of an invasive megascoelecid earthworm (Amynthas gracilis, Kinberg 1867) inhabiting actively volcanic soils in the Azores archipelago. Cunha L; Campos I; Montiel R; Rodrigues A; Morgan AJ Ecotoxicol Environ Saf; 2011 Jan; 74(1):25-32. PubMed ID: 20797787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]