These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25814064)

  • 1. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.
    Paolo FS; Fricker HA; Padman L
    Science; 2015 Apr; 348(6232):327-31. PubMed ID: 25814064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antarctic ice-sheet loss driven by basal melting of ice shelves.
    Pritchard HD; Ligtenberg SR; Fricker HA; Vaughan DG; van den Broeke MR; Padman L
    Nature; 2012 Apr; 484(7395):502-5. PubMed ID: 22538614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation.
    Paolo FS; Padman L; Fricker HA; Adusumilli S; Howard S; Siegfried MR
    Nat Geosci; 2018; 11(2):121-126. PubMed ID: 29333198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive unanchoring of Antarctic ice shelves since 1973.
    Miles BWJ; Bingham RG
    Nature; 2024 Feb; 626(8000):785-791. PubMed ID: 38383628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.
    Pritchard HD; Arthern RJ; Vaughan DG; Edwards LA
    Nature; 2009 Oct; 461(7266):971-5. PubMed ID: 19776741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated sea-level rise from West Antarctica.
    Thomas R; Rignot E; Casassa G; Kanagaratnam P; Acuña C; Akins T; Brecher H; Frederick E; Gogineni P; Krabill W; Manizade S; Ramamoorthy H; Rivera A; Russell R; Sonntag J; Swift R; Yungel J; Zwally J
    Science; 2004 Oct; 306(5694):255-8. PubMed ID: 15388895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves.
    Liu Y; Moore JC; Cheng X; Gladstone RM; Bassis JN; Liu H; Wen J; Hui F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3263-8. PubMed ID: 25733856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidecadal warming of Antarctic waters.
    Schmidtko S; Heywood KJ; Thompson AF; Aoki S
    Science; 2014 Dec; 346(6214):1227-31. PubMed ID: 25477461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves.
    Adusumilli S; Fricker HA; Medley B; Padman L; Siegfried MR
    Nat Geosci; 2020 Sep; 13(9):616-620. PubMed ID: 32952606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four decades of Antarctic Ice Sheet mass balance from 1979-2017.
    Rignot E; Mouginot J; Scheuchl B; van den Broeke M; van Wessem MJ; Morlighem M
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1095-1103. PubMed ID: 30642972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin.
    Feldmann J; Levermann A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14191-6. PubMed ID: 26578762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annual mass budget of Antarctic ice shelves from 1997 to 2021.
    Davison BJ; Hogg AE; Gourmelen N; Jakob L; Wuite J; Nagler T; Greene CA; Andreasen J; Engdahl ME
    Sci Adv; 2023 Oct; 9(41):eadi0186. PubMed ID: 37824617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antarctic calving loss rivals ice-shelf thinning.
    Greene CA; Gardner AS; Schlegel NJ; Fraser AD
    Nature; 2022 Sep; 609(7929):948-953. PubMed ID: 35948639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica.
    Hirano D; Tamura T; Kusahara K; Ohshima KI; Nicholls KW; Ushio S; Simizu D; Ono K; Fujii M; Nogi Y; Aoki S
    Nat Commun; 2020 Aug; 11(1):4221. PubMed ID: 32839464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.
    Smith B; Fricker HA; Gardner AS; Medley B; Nilsson J; Paolo FS; Holschuh N; Adusumilli S; Brunt K; Csatho B; Harbeck K; Markus T; Neumann T; Siegfried MR; Zwally HJ
    Science; 2020 Jun; 368(6496):1239-1242. PubMed ID: 32354841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larsen ice shelf has progressively thinned.
    Shepherd A; Wingham D; Payne T; Skvarca P
    Science; 2003 Oct; 302(5646):856-9. PubMed ID: 14593176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica.
    Flexas MM; Thompson AF; Schodlok MP; Zhang H; Speer K
    Sci Adv; 2022 Aug; 8(32):eabj9134. PubMed ID: 35960791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.