These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 25814177)
1. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Vikingsson L; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Biomech; 2015 May; 48(7):1310-7. PubMed ID: 25814177 [TBL] [Abstract][Full Text] [Related]
2. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609 [TBL] [Abstract][Full Text] [Related]
3. An "in vitro" experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Vikingsson L; Gallego Ferrer G; Gómez-Tejedor JA; Gómez Ribelles JL J Mech Behav Biomed Mater; 2014 Apr; 32():125-131. PubMed ID: 24447878 [TBL] [Abstract][Full Text] [Related]
4. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel. Panadero JA; Vikingsson L; Gomez Ribelles JL; Lanceros-Mendez S; Sencadas V J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):1037-43. PubMed ID: 25230332 [TBL] [Abstract][Full Text] [Related]
5. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
6. Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. Gong Y; He L; Li J; Zhou Q; Ma Z; Gao C; Shen J J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):192-204. PubMed ID: 17106896 [TBL] [Abstract][Full Text] [Related]
7. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Xie J; Ihara M; Jung Y; Kwon IK; Kim SH; Kim YH; Matsuda T Tissue Eng; 2006 Mar; 12(3):449-58. PubMed ID: 16579678 [TBL] [Abstract][Full Text] [Related]
8. Hybrid hyaluronic acid hydrogel/poly(ɛ-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies. Mintz BR; Cooper JA J Biomed Mater Res A; 2014 Sep; 102(9):2918-26. PubMed ID: 24115629 [TBL] [Abstract][Full Text] [Related]
9. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424 [TBL] [Abstract][Full Text] [Related]
10. Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Namkaew J; Laowpanitchakorn P; Sawaddee N; Jirajessada S; Honsawek S; Yodmuang S Molecules; 2021 Jan; 26(3):. PubMed ID: 33499342 [TBL] [Abstract][Full Text] [Related]
11. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
12. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering. Kim SH; Kim SH; Jung Y J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870 [TBL] [Abstract][Full Text] [Related]
13. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383 [TBL] [Abstract][Full Text] [Related]
17. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering. Jonnalagadda JB; Rivero IV J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523 [TBL] [Abstract][Full Text] [Related]
18. Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue. Mancini IAD; Vindas Bolaños RA; Brommer H; Castilho M; Ribeiro A; van Loon JPAM; Mensinga A; van Rijen MHP; Malda J; van Weeren R Tissue Eng Part C Methods; 2017 Nov; 23(11):804-814. PubMed ID: 28795641 [TBL] [Abstract][Full Text] [Related]
19. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Neves SC; Moreira Teixeira LS; Moroni L; Reis RL; Van Blitterswijk CA; Alves NM; Karperien M; Mano JF Biomaterials; 2011 Feb; 32(4):1068-79. PubMed ID: 20980050 [TBL] [Abstract][Full Text] [Related]
20. Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Patel R; Lu M; Diermann SH; Wu A; Pettit A; Huang H J Mech Behav Biomed Mater; 2019 Aug; 96():1-8. PubMed ID: 31015108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]