These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25814299)

  • 21. Burn depth assessments by photoacoustic imaging and laser Doppler imaging.
    Ida T; Iwazaki H; Kawaguchi Y; Kawauchi S; Ohkura T; Iwaya K; Tsuda H; Saitoh D; Sato S; Iwai T
    Wound Repair Regen; 2016 Mar; 24(2):349-55. PubMed ID: 26487320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating clinical observation versus Spatial Frequency Domain Imaging (SFDI), Laser Speckle Imaging (LSI) and thermal imaging for the assessment of burn depth.
    Ponticorvo A; Rowland R; Baldado M; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    Burns; 2019 Mar; 45(2):450-460. PubMed ID: 30327232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of burn injuries using near-infrared spectroscopy.
    Sowa MG; Leonardi L; Payette JR; Cross KM; Gomez M; Fish JS
    J Biomed Opt; 2006; 11(5):054002. PubMed ID: 17092151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive Techniques for the Determination of Burn Severity in Real Time.
    Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ
    J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing multimodal optical imaging of perfusion in burn wounds.
    Lertsakdadet BS; Kennedy GT; Stone R; Kowalczewski C; Kowalczewski AC; Natesan S; Christy RJ; Durkin AJ; Choi B
    Burns; 2022 Jun; 48(4):799-807. PubMed ID: 34696954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active Dynamic Thermography is a Sensitive Method for Distinguishing Burn Wound Conversion.
    Prindeze NJ; Hoffman HA; Ardanuy JG; Zhang J; Carney BC; Moffatt LT; Shupp JW
    J Burn Care Res; 2016; 37(6):e559-e568. PubMed ID: 26284633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling Burn Progression Using Comb Burns: The Impact of Thermal Contact Duration on Model Outcomes.
    Smith RD; Carney BC; Garg G; Monger KW; Prindeze NJ; Shupp JW; Moffatt LT
    J Surg Res; 2021 Apr; 260():155-162. PubMed ID: 33340869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correcting for motion artifact in handheld laser speckle images.
    Lertsakdadet B; Yang BY; Dunn CE; Ponticorvo A; Crouzet C; Bernal N; Durkin AJ; Choi B
    J Biomed Opt; 2018 Mar; 23(3):1-7. PubMed ID: 29546735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI).
    Ponticorvo A; Burmeister DM; Yang B; Choi B; Christy RJ; Durkin AJ
    Biomed Opt Express; 2014 Oct; 5(10):3467-81. PubMed ID: 25360365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surgical wound debridement sequentially characterized in a porcine burn model with multispectral imaging.
    King DR; Li W; Squiers JJ; Mohan R; Sellke E; Mo W; Zhang X; Fan W; DiMaio JM; Thatcher JE
    Burns; 2015 Nov; 41(7):1478-87. PubMed ID: 26073358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methemoglobin: A New Way to Distinguish Burn Depth.
    Saiko G
    Adv Exp Med Biol; 2017; 977():359-365. PubMed ID: 28685466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Burn depth estimation using indocyanine green fluorescence.
    Green HA; Bua D; Anderson RR; Nishioka NS
    Arch Dermatol; 1992 Jan; 128(1):43-9. PubMed ID: 1739286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing paediatric scald injuries using Laser Speckle Contrast Imaging.
    Lindahl F; Tesselaar E; Sjöberg F
    Burns; 2013 Jun; 39(4):662-6. PubMed ID: 23092702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A preliminary study on the identification and distribution of epidermal stem cells in different degrees of burn wounds in scalded rats].
    Xie JL; Li TZ; Qi SH; Bian HN; Cheng JD; Xu YB; Liang HZ
    Zhonghua Shao Shang Za Zhi; 2003 Dec; 19(6):344-6. PubMed ID: 14761642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Analysis of Critically Perfused Tissues by Laser Speckle Contrast Analysis (LASCA) Perfusion Imaging].
    Limbourg A; Radtke C; Ipaktchi R; Vogt PM
    Handchir Mikrochir Plast Chir; 2016 Dec; 48(6):354-362. PubMed ID: 28033625
    [No Abstract]   [Full Text] [Related]  

  • 36. Spatial Frequency Domain Imaging (SFDI) of clinical burns: A case report.
    Ponticorvo A; Rowland R; Baldado M; Kennedy GT; Hosking AM; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    Burns Open; 2020 Apr; 4(2):67-71. PubMed ID: 32832745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoptotic cells are present in ischemic zones of deep partial-thickness burns.
    Gravante G; Palmieri MB; Esposito G; Delogu D; Santeusanio G; Filingeri V; Montone A
    J Burn Care Res; 2006; 27(5):688-93. PubMed ID: 16998402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy.
    McGill DJ; Sørensen K; MacKay IR; Taggart I; Watson SB
    Burns; 2007 Nov; 33(7):833-42. PubMed ID: 17614206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cutaneous microcirculatory assessment of the burn wound is associated with depth of injury and predicts healing time.
    Merz KM; Pfau M; Blumenstock G; Tenenhaus M; Schaller HE; Rennekampff HO
    Burns; 2010 Jun; 36(4):477-82. PubMed ID: 19854578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indocyanine green dye angiography accurately predicts survival in the zone of ischemia in a burn comb model.
    Fourman MS; Phillips BT; Crawford L; McClain SA; Lin F; Thode HC; Dagum AB; Singer AJ; Clark RA
    Burns; 2014 Aug; 40(5):940-6. PubMed ID: 24231464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.