BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25814321)

  • 1. Accumulation and effects of metal mixtures in two seaweed species.
    Jarvis TA; Bielmyer-Fraser GK
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():28-33. PubMed ID: 25814321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary metal toxicity to the marine sea hare, Aplysia californica.
    Jarvis TA; Capo TR; Bielmyer-Fraser GK
    Comp Biochem Physiol C Toxicol Pharmacol; 2015; 174-175():54-64. PubMed ID: 26122312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation from dietary exposure in the sea urchin, Strongylocentrotus droebachiensis.
    Bielmyer GK; Jarvis TA; Harper BT; Butler B; Rice L; Ryan S; McLoughlin P
    Arch Environ Contam Toxicol; 2012 Jul; 63(1):86-94. PubMed ID: 22402781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.
    Henriques B; Rocha LS; Lopes CB; Figueira P; Duarte AC; Vale C; Pardal MA; Pereira E
    J Environ Manage; 2017 Apr; 191():275-289. PubMed ID: 28129560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile.
    Encina-Montoya F; Vega-Aguayo R; Díaz O; Esse C; Nimptsch J; Muñoz-Pedreros A
    Environ Monit Assess; 2017 Oct; 189(11):584. PubMed ID: 29075883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of sulfathiazole on the macroalgae Ulva lactuca.
    Leston S; Nunes M; Viegas I; Nebot C; Cepeda A; Pardal MÂ; Ramos F
    Chemosphere; 2014 Apr; 100():105-10. PubMed ID: 24393561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal accumulation and toxicity measured by PAM--chlorophyll fluorescence in seven species of marine macroalgae.
    Baumann HA; Morrison L; Stengel DB
    Ecotoxicol Environ Saf; 2009 May; 72(4):1063-75. PubMed ID: 19106005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study of metal distribution in three main classes of seaweed.
    Ryan S; McLoughlin P; O'Donovan O
    Environ Pollut; 2012 Aug; 167():171-7. PubMed ID: 22575098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea.
    Jitar O; Teodosiu C; Oros A; Plavan G; Nicoara M
    N Biotechnol; 2015 May; 32(3):369-78. PubMed ID: 25500720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat.
    Pawlik-Skowrońska B; Pirszel J; Brown MT
    Aquat Toxicol; 2007 Jul; 83(3):190-9. PubMed ID: 17532484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca.
    Turner A; Pollock H; Brown MT
    Environ Pollut; 2009; 157(8-9):2314-9. PubMed ID: 19375205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features.
    dos Santos RW; Schmidt ÉC; de L Felix MR; Polo LK; Kreusch M; Pereira DT; Costa GB; Simioni C; Chow F; Ramlov F; Maraschin M; Bouzon ZL
    Ecotoxicol Environ Saf; 2014 Jul; 105():80-9. PubMed ID: 24793517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca.
    Turner A; Brice D; Brown MT
    Ecotoxicology; 2012 Jan; 21(1):148-54. PubMed ID: 21877230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.
    Pilatti FK; Ramlov F; Schmidt EC; Kreusch M; Pereira DT; Costa C; de Oliveira ER; Bauer CM; Rocha M; Bouzon ZL; Maraschin M
    Chemosphere; 2016 Aug; 156():428-437. PubMed ID: 27192480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga.
    Kearns J; Turner A
    Environ Pollut; 2016 Jan; 208(Pt B):435-41. PubMed ID: 26552530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on growth and accumulation of zinc in six seaweed species.
    Amado Filho GM; Karez CS; Andrade LR; Yoneshigue-Valentin Y; Pfeiffer WC
    Ecotoxicol Environ Saf; 1997 Aug; 37(3):223-8. PubMed ID: 9378088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.
    Luo L; Ke C; Guo X; Shi B; Huang M
    Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index.
    Pereira P; de Pablo H; Rosa-Santos F; Pacheco M; Vale C
    Aquat Toxicol; 2009 Mar; 91(4):336-45. PubMed ID: 19147236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg).
    Rybak A; Messyasz B; Łęska B
    Chemosphere; 2012 Nov; 89(9):1066-76. PubMed ID: 22726424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of the toxicity and bioaccumulation of cisplatin in the marine environment using the macroalga, Ulva lactuca.
    Easton C; Turner A; Sewell G
    Environ Pollut; 2011 Dec; 159(12):3504-8. PubMed ID: 21908086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.