These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25814332)

  • 1. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.
    Fitz BD; Mannion BC; To K; Hoac T; Synovec RE
    J Chromatogr A; 2015 May; 1392():82-90. PubMed ID: 25814332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.
    Fitz BD; Wilson RB; Parsons BA; Hoggard JC; Synovec RE
    J Chromatogr A; 2012 Nov; 1266():116-23. PubMed ID: 23084826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, high peak capacity separations in gas chromatography-time-of-flight mass spectrometry.
    Wilson RB; Hoggard JC; Synovec RE
    Anal Chem; 2012 May; 84(9):4167-73. PubMed ID: 22448931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed cryo-focusing injection for gas chromatography: reduction of injection band broadening with concentration enrichment.
    Wilson RB; Fitz BD; Mannion BC; Lai T; Olund RK; Hoggard JC; Synovec RE
    Talanta; 2012 Aug; 97():9-15. PubMed ID: 22841041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of the two-dimensional mass channel cluster plot method to fast separations utilizing low thermal mass gas chromatography with time-of-flight mass spectrometry.
    Fitz BD; Synovec RE
    Anal Chim Acta; 2016 Mar; 913():160-70. PubMed ID: 26945000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.
    Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE
    J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput analysis of atmospheric volatile organic compounds by thermal injection--isothermal gas chromatography--time-of-flight mass spectrometry.
    Wilson RB; Hoggard JC; Synovec RE
    Talanta; 2013 Jan; 103():95-102. PubMed ID: 23200363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput analysis of bergamot essential oil by fast solid-phase microextraction-capillary gas chromatography-flame ionization detection.
    Tranchida PQ; Presti ML; Costa R; Dugo P; Dugo G; Mondello L
    J Chromatogr A; 2006 Jan; 1103(1):162-5. PubMed ID: 16364343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated gas chromatography for ultrafast analysis of volatile organic compounds in air.
    Zhang Y; Wu D; Yan X; Ding K; Guan Y
    Talanta; 2016 Jul; 154():548-54. PubMed ID: 27154713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Less than one minute low-pressure gas chromatography - mass spectrometry.
    Fialkov AB; Lehotay SJ; Amirav A
    J Chromatogr A; 2020 Feb; 1612():460691. PubMed ID: 31759639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography.
    Zhang C; Cagliero C; Pierson SA; Anderson JL
    J Chromatogr A; 2017 Jan; 1481():1-11. PubMed ID: 28017564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic investigation of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with dynamic pressure gradient modulation for high peak capacity separations.
    Schöneich S; Trinklein TJ; Warren CG; Synovec RE
    Anal Chim Acta; 2020 Oct; 1134():115-124. PubMed ID: 33059857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of split/splitless operation and rapid heating of a multi-bed sorption trap used for gas chromatography analysis of large-volume air samples.
    Whiting JJ; Sacks RD
    J Sep Sci; 2006 Feb; 29(2):218-27. PubMed ID: 16524095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming.
    Reid VR; McBrady AD; Synovec RE
    J Chromatogr A; 2007 May; 1148(2):236-43. PubMed ID: 17386929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Headspace solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of aerosol from tobacco heating product.
    Savareear B; Lizak R; Brokl M; Wright C; Liu C; Focant JF
    J Chromatogr A; 2017 Oct; 1520():135-142. PubMed ID: 28911941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Headspace solid-phase microextraction-gas chromatography-mass spectrometry for analysis of volatile components from Atractlodes macrocephala Koidz].
    Guo F; Huang L; Zhou S
    Se Pu; 2007 Jan; 25(1):43-7. PubMed ID: 17432574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis on volatile constituents of Semen Ziziphi Spinosae by HS-SPME-GC-MS].
    Zhang JA; Chen B
    Zhong Yao Cai; 2012 Feb; 35(2):235-40. PubMed ID: 22822670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. I. Method development and optimization.
    Setkova L; Risticevic S; Pawliszyn J
    J Chromatogr A; 2007 Apr; 1147(2):213-23. PubMed ID: 17359985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.
    Damm M; Kappe CO
    Anal Chim Acta; 2011 Nov; 707(1-2):76-83. PubMed ID: 22027122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile.
    Pontes M; Pereira J; Câmara JS
    Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.