These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
3. Application of an improved magnetic immunosorbent in an Ephesia chip designed for circulating tumor cell capture. Svobodova Z; Kucerova J; Autebert J; Horak D; Bruckova L; Viovy JL; Bilkova Z Electrophoresis; 2014 Feb; 35(2-3):323-9. PubMed ID: 23868447 [TBL] [Abstract][Full Text] [Related]
4. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846 [TBL] [Abstract][Full Text] [Related]
5. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Thege FI; Lannin TB; Saha TN; Tsai S; Kochman ML; Hollingsworth MA; Rhim AD; Kirby BJ Lab Chip; 2014 May; 14(10):1775-84. PubMed ID: 24681997 [TBL] [Abstract][Full Text] [Related]
7. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648 [TBL] [Abstract][Full Text] [Related]
8. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Kang JH; Krause S; Tobin H; Mammoto A; Kanapathipillai M; Ingber DE Lab Chip; 2012 Jun; 12(12):2175-81. PubMed ID: 22453808 [TBL] [Abstract][Full Text] [Related]
9. Nano "fly paper" technology for the capture of circulating tumor cells. Wang S; Owens GE; Tseng HR Methods Mol Biol; 2011; 726():141-50. PubMed ID: 21424448 [TBL] [Abstract][Full Text] [Related]
10. EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low. Ring A; Mineyev N; Zhu W; Park E; Lomas C; Punj V; Yu M; Barrak D; Forte V; Porras T; Tripathy D; Lang JE Oncotarget; 2015 Dec; 6(42):44623-34. PubMed ID: 26556851 [TBL] [Abstract][Full Text] [Related]
11. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry. Takao M; Takeda K Cytometry A; 2011 Feb; 79(2):107-17. PubMed ID: 21246706 [TBL] [Abstract][Full Text] [Related]
12. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. Lu NN; Xie M; Wang J; Lv SW; Yi JS; Dong WG; Huang WH ACS Appl Mater Interfaces; 2015 Apr; 7(16):8817-26. PubMed ID: 25853336 [TBL] [Abstract][Full Text] [Related]
13. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Tang M; Wen CY; Wu LL; Hong SL; Hu J; Xu CM; Pang DW; Zhang ZL Lab Chip; 2016 Apr; 16(7):1214-23. PubMed ID: 26928405 [TBL] [Abstract][Full Text] [Related]
14. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads. Kim YJ; Koo GB; Lee JY; Moon HS; Kim DG; Lee DG; Lee JY; Oh JH; Park JM; Kim MS; Woo HG; Kim SI; Kang P; Choi W; Sim TS; Park WY; Lee JG; Kim YS Biomaterials; 2014 Aug; 35(26):7501-10. PubMed ID: 24917030 [TBL] [Abstract][Full Text] [Related]
15. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096 [TBL] [Abstract][Full Text] [Related]
16. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
17. Vertical Magnetic Separation of Circulating Tumor Cells for Somatic Genomic-Alteration Analysis in Lung Cancer Patients. Yoo CE; Park JM; Moon HS; Joung JG; Son DS; Jeon HJ; Kim YJ; Han KY; Sun JM; Park K; Park D; Park WY Sci Rep; 2016 Nov; 6():37392. PubMed ID: 27892470 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis. Gogoi P; Sepehri S; Chow W; Handique K; Wang Y Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840 [TBL] [Abstract][Full Text] [Related]
19. Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system. Watanabe M; Uehara Y; Yamashita N; Fujimura Y; Nishio K; Sawada T; Takeda K; Koizumi F; Koh Y Cytometry A; 2014 Mar; 85(3):206-13. PubMed ID: 24327318 [TBL] [Abstract][Full Text] [Related]