These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25815767)
21. Seasonal migration of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) over the Bohai Sea in northern China. Fu XW; Li C; Feng HQ; Liu ZF; Chapman JW; Reynolds DR; Wu KM Bull Entomol Res; 2014 Oct; 104(5):601-9. PubMed ID: 24901755 [TBL] [Abstract][Full Text] [Related]
22. Male nutritional status does not impact the reproductive potential of female Cnaphalocrocis medinalis moths under conditions of nutrient shortage. Guo JW; Cui Y; Lin PJ; Zhai BP; Lu ZX; Chapman JW; Hu G Insect Sci; 2022 Apr; 29(2):467-477. PubMed ID: 34498794 [TBL] [Abstract][Full Text] [Related]
23. Juvenile hormone regulates the shift from migrants to residents in adult oriental armyworm, Mythimna separata. Zhang L; Cheng L; Chapman JW; Sappington TW; Liu J; Cheng Y; Jiang X Sci Rep; 2020 Jul; 10(1):11626. PubMed ID: 32669571 [TBL] [Abstract][Full Text] [Related]
24. Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly Melitaea cinxia. Niitepõld K Oecologia; 2019 Oct; 191(2):271-283. PubMed ID: 31440807 [TBL] [Abstract][Full Text] [Related]
25. Reproductive plasticity, ovarian dynamics and maternal effects in response to temperature and flight in Pararge aegeria. Gibbs M; Van Dyck H; Karlsson B J Insect Physiol; 2010 Sep; 56(9):1275-83. PubMed ID: 20416319 [TBL] [Abstract][Full Text] [Related]
26. Evidence for obligate migratory flight behavior in young European corn borer (Lepidoptera: Crambidae) females. Dorhout DL; Sappington TW; Rice ME Environ Entomol; 2008 Oct; 37(5):1280-90. PubMed ID: 19036208 [TBL] [Abstract][Full Text] [Related]
27. Regulation of migration in Mythimna separata (Walker) in China: a review integrating environmental, physiological, hormonal, genetic, and molecular factors. Jiang X; Luo L; Zhang L; Sappington TW; Hu Y Environ Entomol; 2011 Jun; 40(3):516-33. PubMed ID: 22251629 [TBL] [Abstract][Full Text] [Related]
28. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Jones CM; Papanicolaou A; Mironidis GK; Vontas J; Yang Y; Lim KS; Oakeshott JG; Bass C; Chapman JW Mol Ecol; 2015 Oct; 24(19):4901-11. PubMed ID: 26331997 [TBL] [Abstract][Full Text] [Related]
29. Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia. Niitepõld K; Boggs CL PLoS One; 2015; 10(10):e0140104. PubMed ID: 26510164 [TBL] [Abstract][Full Text] [Related]
30. The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Dreyer D; Frost B; Mouritsen H; Günther A; Green K; Whitehouse M; Johnsen S; Heinze S; Warrant E Curr Biol; 2018 Jul; 28(13):2160-2166.e5. PubMed ID: 29937347 [TBL] [Abstract][Full Text] [Related]
31. Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus. Lorenz MW J Insect Physiol; 2007 Aug; 53(8):819-32. PubMed ID: 17490675 [TBL] [Abstract][Full Text] [Related]
32. Flight capability and fatty acid level in triacylglycerol of long-distance migratory adults of the common cutworm, Spodoptera litura. Murata M; Tojo S Zoolog Sci; 2004 Feb; 21(2):181-8. PubMed ID: 14993830 [TBL] [Abstract][Full Text] [Related]
33. Starvation on First or Second Day of Adulthood Reverses Larval-Stage Decision to Migrate in Beet Webworm (Lepidoptera: Pyralidae). Cheng Y; Sappington TW; Luo L; Zhang L; Jiang X Environ Entomol; 2021 Jun; 50(3):523-531. PubMed ID: 33693559 [TBL] [Abstract][Full Text] [Related]
34. Flight behaviour attenuates the trade-off between flight capability and reproduction in a wing polymorphic cricket. Guerra PA; Pollack GS Biol Lett; 2009 Apr; 5(2):229-31. PubMed ID: 19033134 [TBL] [Abstract][Full Text] [Related]
35. Low Barometric Pressure Enhances Tethered-Flight Performance and Reproductive of the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae). Miao J; Guo P; Li H; Wei C; Liu Q; Gong Z; Duan Y; Li T; Jiang Y; Feng H; Wu Y J Econ Entomol; 2021 Apr; 114(2):620-626. PubMed ID: 33449074 [TBL] [Abstract][Full Text] [Related]
36. Effects of immune challenge on the oviposition strategy of a noctuid moth. Staudacher H; Menken SB; Groot AT J Evol Biol; 2015 Aug; 28(8):1568-77. PubMed ID: 26086071 [TBL] [Abstract][Full Text] [Related]
37. Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus. Clark RM; Zera AJ; Behmer ST J Exp Biol; 2015 Jan; 218(Pt 2):298-308. PubMed ID: 25524979 [TBL] [Abstract][Full Text] [Related]
38. Effects of suppressed oviposition activity and flight muscle histolysis on food consumption and ovarian development in a wing-dimorphic cricket: an explanation for sporadic conclusions related to physiological trade-offs. Tanaka S J Insect Physiol; 2001 Jan; 47(1):83-94. PubMed ID: 11033170 [TBL] [Abstract][Full Text] [Related]
39. Reproductive and post-embryonic daily rhythm patterns of the malaria vector Anopheles (Kerteszia) cruzii: aspects of the life cycle. Chahad-Ehlers S; Lozovei AL; Marques MD Chronobiol Int; 2007; 24(2):289-304. PubMed ID: 17453848 [TBL] [Abstract][Full Text] [Related]
40. Comparison of reproductive and flight capacity of Loxostege sticticalis (Lepidoptera: Pyralidae), developing from diapause and non-diapause larvae. Xie D; Luo L; Sappington TW; Jiang X; Zhang L Environ Entomol; 2012 Oct; 41(5):1199-207. PubMed ID: 23068178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]