These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 25815898)
1. Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis. Madigan CA; Martinot AJ; Wei JR; Madduri A; Cheng TY; Young DC; Layre E; Murry JP; Rubin EJ; Moody DB PLoS Pathog; 2015 Mar; 11(3):e1004792. PubMed ID: 25815898 [TBL] [Abstract][Full Text] [Related]
2. Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB. Choudhury M; Koduru TN; Kumar N; Salimi S; Desai K; Prabhu NP; Sritharan M Biometals; 2021 Jun; 34(3):511-528. PubMed ID: 33609202 [TBL] [Abstract][Full Text] [Related]
3. Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Madigan CA; Cheng TY; Layre E; Young DC; McConnell MJ; Debono CA; Murry JP; Wei JR; Barry CE; Rodriguez GM; Matsunaga I; Rubin EJ; Moody DB Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1257-62. PubMed ID: 22232695 [TBL] [Abstract][Full Text] [Related]
4. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Knobloch P; Koliwer-Brandl H; Arnold FM; Hanna N; Gonda I; Adenau S; Personnic N; Barisch C; Seeger MA; Soldati T; Hilbi H Cell Microbiol; 2020 May; 22(5):e13163. PubMed ID: 31945239 [TBL] [Abstract][Full Text] [Related]
5. Inability to detect mycobactin in mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by mycobacteria in vivo. Lambrecht RS; Collins MT Microb Pathog; 1993 Mar; 14(3):229-38. PubMed ID: 8321124 [TBL] [Abstract][Full Text] [Related]
6. Iron Acquisition in Mycobacterium avium subsp. paratuberculosis. Wang J; Moolji J; Dufort A; Staffa A; Domenech P; Reed MB; Behr MA J Bacteriol; 2015 Dec; 198(5):857-66. PubMed ID: 26712939 [TBL] [Abstract][Full Text] [Related]
7. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. Sandhu P; Akhter Y J Inorg Biochem; 2017 May; 170():75-84. PubMed ID: 28231453 [TBL] [Abstract][Full Text] [Related]
8. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. Shyam M; Shilkar D; Verma H; Dev A; Sinha BN; Brucoli F; Bhakta S; Jayaprakash V J Med Chem; 2021 Jan; 64(1):71-100. PubMed ID: 33372516 [TBL] [Abstract][Full Text] [Related]
9. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. Wells RM; Jones CM; Xi Z; Speer A; Danilchanka O; Doornbos KS; Sun P; Wu F; Tian C; Niederweis M PLoS Pathog; 2013 Jan; 9(1):e1003120. PubMed ID: 23431276 [TBL] [Abstract][Full Text] [Related]
10. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Quadri LE; Sello J; Keating TA; Weinreb PH; Walsh CT Chem Biol; 1998 Nov; 5(11):631-45. PubMed ID: 9831524 [TBL] [Abstract][Full Text] [Related]
11. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. De Voss JJ; Rutter K; Schroeder BG; Su H; Zhu Y; Barry CE Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1252-7. PubMed ID: 10655517 [TBL] [Abstract][Full Text] [Related]
12. A Pivotal Role for Mycobactin/ Foreman M; Kolodkin-Gal I; Barkan D Microbiol Spectr; 2022 Dec; 10(6):e0262322. PubMed ID: 36321891 [TBL] [Abstract][Full Text] [Related]
13. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Tufariello JM; Chapman JR; Kerantzas CA; Wong KW; Vilchèze C; Jones CM; Cole LE; Tinaztepe E; Thompson V; Fenyö D; Niederweis M; Ueberheide B; Philips JA; Jacobs WR Proc Natl Acad Sci U S A; 2016 Jan; 113(3):E348-57. PubMed ID: 26729876 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. Zhang L; Hendrickson RC; Meikle V; Lefkowitz EJ; Ioerger TR; Niederweis M PLoS Pathog; 2020 Feb; 16(2):e1008337. PubMed ID: 32069330 [TBL] [Abstract][Full Text] [Related]
15. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. Sritharan M J Bacteriol; 2016 Sep; 198(18):2399-409. PubMed ID: 27402628 [TBL] [Abstract][Full Text] [Related]
16. Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. Reddy PV; Puri RV; Chauhan P; Kar R; Rohilla A; Khera A; Tyagi AK J Infect Dis; 2013 Oct; 208(8):1255-65. PubMed ID: 23788726 [TBL] [Abstract][Full Text] [Related]
17. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Jones CM; Wells RM; Madduri AV; Renfrow MB; Ratledge C; Moody DB; Niederweis M Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1945-50. PubMed ID: 24497493 [TBL] [Abstract][Full Text] [Related]
18. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket. Chai AF; Bulloch EM; Evans GL; Lott JS; Baker EN; Johnston JM Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):862-72. PubMed ID: 25849397 [TBL] [Abstract][Full Text] [Related]
19. Role of a 21-kDa iron-regulated protein IrpA in the uptake of ferri-exochelin by Mycobacterium smegmatis. Kumar N; Sritharan M J Appl Microbiol; 2020 Dec; 129(6):1733-1743. PubMed ID: 32472729 [TBL] [Abstract][Full Text] [Related]