BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25815904)

  • 1. Contribution of dihydrouridine in folding of the D-arm in tRNA.
    Dyubankova N; Sochacka E; Kraszewska K; Nawrot B; Herdewijn P; Lescrinier E
    Org Biomol Chem; 2015 May; 13(17):4960-6. PubMed ID: 25815904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A counterintuitive Mg2+-dependent and modification-assisted functional folding of mitochondrial tRNAs.
    Jones CI; Spencer AC; Hsu JL; Spremulli LL; Martinis SA; DeRider M; Agris PF
    J Mol Biol; 2006 Sep; 362(4):771-86. PubMed ID: 16949614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of dihydrouridine formation on tRNA.
    Yu F; Tanaka Y; Yamashita K; Suzuki T; Nakamura A; Hirano N; Suzuki T; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19593-8. PubMed ID: 22123979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor.
    Okimoto R; Wolstenholme DR
    EMBO J; 1990 Oct; 9(10):3405-11. PubMed ID: 2209550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of D Modification Sites by Integrating Heterogeneous Features in
    Feng P; Xu Z; Yang H; Lv H; Ding H; Liu L
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from Thermus thermophilus, an extreme-thermophilic eubacterium.
    Kusuba H; Yoshida T; Iwasaki E; Awai T; Kazayama A; Hirata A; Tomikawa C; Yamagami R; Hori H
    J Biochem; 2015 Dec; 158(6):513-21. PubMed ID: 26112661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario.
    Bou-Nader C; Montémont H; Guérineau V; Jean-Jean O; Brégeon D; Hamdane D
    Nucleic Acids Res; 2018 Feb; 46(3):1386-1394. PubMed ID: 29294097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Codon recognition by tRNA molecules with a modified or unmodified uridine at the first position of the anticodon.
    Okumura S; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1995; (34):203-4. PubMed ID: 8841623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of dihydrouridine and related compounds.
    House CH; Miller SL
    Biochemistry; 1996 Jan; 35(1):315-20. PubMed ID: 8555190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
    Xing F; Hiley SL; Hughes TR; Phizicky EM
    J Biol Chem; 2004 Apr; 279(17):17850-60. PubMed ID: 14970222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei.
    Krog JS; Español Y; Giessing AM; Dziergowska A; Malkiewicz A; Ribas de Pouplana L; Kirpekar F
    FEBS J; 2011 Dec; 278(24):4782-96. PubMed ID: 22040320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranscriptional modification of tRNA in psychrophilic bacteria.
    Dalluge JJ; Hamamoto T; Horikoshi K; Morita RY; Stetter KO; McCloskey JA
    J Bacteriol; 1997 Mar; 179(6):1918-23. PubMed ID: 9068636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.
    Morin A; Auxilien S; Senger B; Tewari R; Grosjean H
    RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe T Psi C domain.
    Koshlap KM; Guenther R; Sochacka E; Malkiewicz A; Agris PF
    Biochemistry; 1999 Jul; 38(27):8647-56. PubMed ID: 10393540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Nikonowicz EP
    Nucleic Acids Res; 2005; 33(22):6961-71. PubMed ID: 16377777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA.
    Urbonavicius J; Armengaud J; Grosjean H
    J Mol Biol; 2006 Mar; 357(2):387-99. PubMed ID: 16434050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Nucleotides and RNA Structure Prediction.
    Varenyk Y; Lorenz R
    Methods Mol Biol; 2024; 2726():169-207. PubMed ID: 38780732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.