These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25815966)

  • 1. Exciton mapping at subwavelength scales in two-dimensional materials.
    Tizei LH; Lin YC; Mukai M; Sawada H; Lu AY; Li LJ; Kimoto K; Suenaga K
    Phys Rev Lett; 2015 Mar; 114(10):107601. PubMed ID: 25815966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualization of Subnanometer Variations in the Excitonic Spectra of 2D/3D Semiconductor/Metal Heterostructures.
    Reidy K; Majchrzak PE; Haas B; Thomsen JD; Konečná A; Park E; Klein J; Jones AJH; Volckaert K; Biswas D; Watson MD; Cacho C; Narang P; Koch CT; Ulstrup S; Ross FM; Idrobo JC
    Nano Lett; 2023 Feb; 23(3):1068-1076. PubMed ID: 36637381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.
    Ceballos F; Bellus MZ; Chiu HY; Zhao H
    ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide.
    Carozo V; Wang Y; Fujisawa K; Carvalho BR; McCreary A; Feng S; Lin Z; Zhou C; Perea-López N; Elías AL; Kabius B; Crespi VH; Terrones M
    Sci Adv; 2017 Apr; 3(4):e1602813. PubMed ID: 28508048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Dead" Exciton Layer and Exciton Anisotropy of Bulk MoS
    Kravets VG; Zhukov AA; Holwill M; Novoselov KS; Grigorenko AN
    ACS Nano; 2022 Nov; 16(11):18637-18647. PubMed ID: 36351038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated approaches for band gap mapping in STEM-EELS.
    Granerød CS; Zhan W; Prytz Ø
    Ultramicroscopy; 2018 Jan; 184(Pt A):39-45. PubMed ID: 28843183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved spectra from millivolt EELS data.
    Li C; Subramanian G; Spence JC
    Microsc Microanal; 2014 Jun; 20(3):837-46. PubMed ID: 24878029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal dissociation of inter-layer excitons in MoS
    Mouri S; Zhang W; Kozawa D; Miyauchi Y; Eda G; Matsuda K
    Nanoscale; 2017 May; 9(20):6674-6679. PubMed ID: 28485422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous excitonic resonance Raman effects in few-layered MoS2.
    Lee JU; Park J; Son YW; Cheong H
    Nanoscale; 2015 Feb; 7(7):3229-36. PubMed ID: 25620555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.
    Dhakal KP; Duong DL; Lee J; Nam H; Kim M; Kan M; Lee YH; Kim J
    Nanoscale; 2014 Nov; 6(21):13028-35. PubMed ID: 25247614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a monochromator for aberration-corrected scanning transmission electron microscopy.
    Mukai M; Okunishi E; Ashino M; Omoto K; Fukuda T; Ikeda A; Somehara K; Kaneyama T; Saitoh T; Hirayama T; Ikuhara Y
    Microscopy (Oxf); 2015 Jun; 64(3):151-8. PubMed ID: 25654985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revised fine splitting of excitons in diamond.
    Sauer R; Sternschulte H; Wahl S; Thonke K; Anthony TR
    Phys Rev Lett; 2000 May; 84(18):4172-5. PubMed ID: 10990638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence spectroscopy of electrochemically self-assembled ZnSe and Mn:ZnSe nanowires.
    Ramanathan S; Patibandla S; Bandyopadhyay S; Anderson J; Edwards JD
    Nanotechnology; 2008 May; 19(19):195601. PubMed ID: 21825716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy.
    Yankovich AB; Munkhbat B; Baranov DG; Cuadra J; Olsén E; Lourenço-Martins H; Tizei LHG; Kociak M; Olsson E; Shegai T
    Nano Lett; 2019 Nov; 19(11):8171-8181. PubMed ID: 31639311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes.
    Senga R; Pichler T; Yomogida Y; Tanaka T; Kataura H; Suenaga K
    Nano Lett; 2018 Jun; 18(6):3920-3925. PubMed ID: 29783838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces.
    Pinto RM; Gouveia W; Maçôas EM; Santos IC; Raja S; Baleizão C; Alves H
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27720-9. PubMed ID: 26599347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching ultimate nanometrology for AlOx thickness in magnetic tunnel junction by analytical electron microscopy and X-ray reflectometry.
    Song SA; Hirano T; Park JB; Kaji K; Kim KH; Terada S
    Microsc Microanal; 2005 Oct; 11(5):431-45. PubMed ID: 17481324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic Properties of Atomically Thin Mo
    Pelaez-Fernandez M; Lin YC; Suenaga K; Arenal R
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valley and spin dynamics in MoSe2 two-dimensional crystals.
    Kumar N; He J; He D; Wang Y; Zhao H
    Nanoscale; 2014 Nov; 6(21):12690-5. PubMed ID: 25212540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.