These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 2581606)
21. The T lymphocyte response to cytochrome c. V. Determination of the minimal peptide size required for stimulation of T cell clones and assessment of the contribution of each residue beyond this size to antigenic potency. Schwartz RH; Fox BS; Fraga E; Chen C; Singh B J Immunol; 1985 Oct; 135(4):2598-608. PubMed ID: 2411804 [TBL] [Abstract][Full Text] [Related]
22. The use of hydrophobic, alpha-helix-defined peptides in delineating the T cell determinant for pigeon cytochrome c. Carbone FR; Fox BS; Schwartz RH; Paterson Y J Immunol; 1987 Mar; 138(6):1838-44. PubMed ID: 2434562 [TBL] [Abstract][Full Text] [Related]
23. Enzymic and immunochemical properties of lysozyme. XVI. A novel synthetic approach to an antigenic reactive site by direct linkage of the relevant conformationally adjacent residues constituting the site. Atassi MZ; Lee CL; Pai RC Biochim Biophys Acta; 1976 Apr; 427(2):745-51. PubMed ID: 57805 [TBL] [Abstract][Full Text] [Related]
24. Characterization of monoclonal antibodies to cytochrome c: analysis of the antigenic structure of holo- and apo-cytochromes, and CNBr-peptide fragments of horse cytochrome c. Kim IC; Nolla H; Priola S Biochem Cell Biol; 1987 Sep; 65(9):783-9. PubMed ID: 2449898 [TBL] [Abstract][Full Text] [Related]
25. Functionally distinct agretopic and epitopic sites. Analysis of the dominant T cell determinant of moth and pigeon cytochromes c with the use of synthetic peptide antigens. Fox BS; Chen C; Fraga E; French CA; Singh B; Schwartz RH J Immunol; 1987 Sep; 139(5):1578-88. PubMed ID: 2442249 [TBL] [Abstract][Full Text] [Related]
26. Mapping of linear B-cell epitopes of the S2 subunit of pertussis toxin. Schmidt W; Schmidt MA Infect Immun; 1989 Feb; 57(2):438-45. PubMed ID: 2463969 [TBL] [Abstract][Full Text] [Related]
27. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. Thermodynamic and functional consequences. Wallace CJ; Mascagni P; Chait BT; Collawn JF; Paterson Y; Proudfoot AE; Kent SB J Biol Chem; 1989 Sep; 264(26):15199-209. PubMed ID: 2475497 [TBL] [Abstract][Full Text] [Related]
28. Correlation between the conformation of cytochrome c peptides and their stimulatory activity in a T-lymphocyte proliferation assay. Pincus MR; Gerewitz F; Schwartz RH; Scheraga HA Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3297-300. PubMed ID: 6304705 [TBL] [Abstract][Full Text] [Related]
29. Mapping the antigenic epitopes of human dihydrofolate reductase by systematic synthesis of peptides on solid supports. Tan XH; Ratnam M; Huang SM; Smith PL; Freisheim JH J Biol Chem; 1990 May; 265(14):8022-6. PubMed ID: 1692321 [TBL] [Abstract][Full Text] [Related]
30. The T lymphocyte response to cytochrome c. IV. Distinguishable sites on a peptide antigen which affect antigenic strength and memory. Hansburg D; Fairwell T; Schwartz RH; Appella E J Immunol; 1983 Jul; 131(1):319-24. PubMed ID: 6190913 [TBL] [Abstract][Full Text] [Related]
31. Antigenic structure of the hepatitis C virus envelope 2 protein. Zhang ZX; Sönnerborg A; Sällberg M Clin Exp Immunol; 1994 Dec; 98(3):382-7. PubMed ID: 7527739 [TBL] [Abstract][Full Text] [Related]
32. Multiple overlapping epitopes in the three antigenic regions of horse cytochrome c1. Jemmerson R J Immunol; 1987 Jan; 138(1):213-9. PubMed ID: 2431055 [TBL] [Abstract][Full Text] [Related]
33. Profile of sequential determinants in tissue polypeptide antigen BrCN:B fragment. Chersi A; Camera M; Trinca ML; Castelli M Experientia; 1989 Feb; 45(2):184-6. PubMed ID: 2465915 [TBL] [Abstract][Full Text] [Related]
34. Conformational preferences of a peptide corresponding to the major antigenic determinant of foot-and-mouth disease virus: implications for peptide-vaccine approaches. de Prat-Gay G Arch Biochem Biophys; 1997 May; 341(2):360-9. PubMed ID: 9169027 [TBL] [Abstract][Full Text] [Related]
35. Peptide mapping of conformational epitopes in a human malarial parasite heat shock protein. Richman SJ; Vedvick TS; Reese RT J Immunol; 1989 Jul; 143(1):285-92. PubMed ID: 2471738 [TBL] [Abstract][Full Text] [Related]
36. Epitope mapping employing antibodies raised against short synthetic peptides: a study of the nicotinic acetylcholine receptor. Maelicke A; Plümer-Wilk R; Fels G; Spencer SR; Engelhard M; Veltel D; Conti-Tronconi BM Biochemistry; 1989 Feb; 28(3):1396-405. PubMed ID: 2469469 [TBL] [Abstract][Full Text] [Related]
37. Fine-specificity analysis of antibodies directed to the C-terminal peptides of cytochrome c recognized by T-lymphocytes. Kilgannon PD; Fraga E; Singh B Mol Immunol; 1986 Mar; 23(3):311-8. PubMed ID: 3012324 [TBL] [Abstract][Full Text] [Related]
38. Interaction of the receptor binding domains of Pseudomonas aeruginosa pili strains PAK, PAO, KB7 and P1 to a cross-reactive antibody and receptor analog: implications for synthetic vaccine design. Campbell AP; Wong WY; Houston M; Schweizer F; Cachia PJ; Irvin RT; Hindsgaul O; Hodges RS; Sykes BD J Mol Biol; 1997 Mar; 267(2):382-402. PubMed ID: 9096233 [TBL] [Abstract][Full Text] [Related]
39. Monoclonal antibodies directed to human and equine chorionic gonadotropins as probes for the topographic analysis of epitopes on the human alpha-subunit. Bidart JM; Troalen F; Bousfield GR; Bohuon C; Bellet D Endocrinology; 1989 Feb; 124(2):923-9. PubMed ID: 2463907 [TBL] [Abstract][Full Text] [Related]
40. Interaction of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pili strain PAK with a cross-reactive antibody: conformation of the bound peptide. Campbell AP; Wong WY; Irvin RT; Sykes BD Biochemistry; 2000 Dec; 39(48):14847-64. PubMed ID: 11101301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]