BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2581613)

  • 1. Dependence of cytoplasmic calcium transients on the membrane potential in isolated nerve endings of the guinea pig.
    Heinonen E; Akerman KE; Kaila K; Scott IG
    Biochim Biophys Acta; 1985 May; 815(2):203-8. PubMed ID: 2581613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurements of the cytosolic Ca2+ activity within isolated guinea pig nerve-endings using entrapped arsenazo III and quin2.
    Akerman KE; Heinonen E; Kaila K; Scott IG
    Biochim Biophys Acta; 1986 Jun; 858(2):275-84. PubMed ID: 2424503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative measurements of cytosolic calcium ion concentration within isolated guinea pig nerve endings using entrapped arsenazo III.
    Akerman KE; Heinonen E
    Biochim Biophys Acta; 1983 Jul; 732(1):117-21. PubMed ID: 6409146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarization of the mitochondrial membrane potential increases free cytosolic calcium in synaptosomes.
    Heinonen E; Akerman KE; Kaila K
    Neurosci Lett; 1984 Aug; 49(1-2):33-7. PubMed ID: 6493595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium entry into voltage-clamped presynaptic terminals of squid.
    Augustine GJ; Charlton MP; Smith SJ
    J Physiol; 1985 Oct; 367():143-62. PubMed ID: 2414438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium uptake of rat brain synaptosomes as a function of membrane potential under different depolarizing conditions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1986 Mar; 372():363-77. PubMed ID: 3723411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RH-3421, a potent dihydropyrazole insecticide, inhibits depolarization-stimulated rises in free [Ca2+] and 45Ca2+ uptake in mammalian synaptosomes.
    Zhang A; Nicholson RA
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1994 Jul; 108(3):307-10. PubMed ID: 7881802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A procedure for detecting changes in the internal Ca2+ concentration in isolated nerve endings using the metallochromic dye arsenazo III.
    Covarrubias M; Tapia R
    Neuroscience; 1982 Jul; 7(7):1641-6. PubMed ID: 6181431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS; Scott IG; Nicholls DG
    J Neurochem; 1984 Dec; 43(6):1624-30. PubMed ID: 6436439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.
    Blaustein MP; Goldring JM
    J Physiol; 1975 Jun; 247(3):589-615. PubMed ID: 49421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical approaches to the study of cytosolic calcium regulation in nerve endings.
    Nicholls DG; Akerman KE
    Philos Trans R Soc Lond B Biol Sci; 1981 Dec; 296(1080):115-22. PubMed ID: 6121337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
    Giovannucci DR; Stuenkel EL
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):735-51. PubMed ID: 9051585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium red inhibits the voltage-dependent increase in cytosolic free calcium in cortical synaptosomes from guinea-pig.
    Taipale HT; Kauppinen RA; Komulainen H
    Biochem Pharmacol; 1989 Apr; 38(7):1109-13. PubMed ID: 2468334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.
    Meunier FM
    J Physiol; 1984 Sep; 354():121-37. PubMed ID: 6207289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrasynaptosomal compartmentation of calcium during depolarization-induced calcium uptake across the plasma membrane.
    Akerman KE; Nicholls DG
    Biochim Biophys Acta; 1981 Jul; 645(1):41-8. PubMed ID: 7260086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium transport by intact synaptosomes. Influence of ionophore A23187 on plasma-membrane potential, plasma-membrane calcium transport, mitochondrial membrane potential, respiration, cytosolic free-calcium concentration and noradrenaline release.
    Akerman KE; Nicholls DG
    Eur J Biochem; 1981 Mar; 115(1):67-73. PubMed ID: 6785087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones.
    Nordmann JJ; Desmazes JP; Georgescauld D
    Neuroscience; 1982 Mar; 7(3):731-7. PubMed ID: 6280104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of acetylcholine from rat brain synaptosomes by various agents in the absence of external calcium ions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1984 Aug; 353():505-21. PubMed ID: 6090643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.