These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 25816196)
1. Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation. Gonçalves RV; Wojcieszak R; Wender H; Sato B Dias C; Vono LL; Eberhardt D; Teixeira SR; Rossi LM ACS Appl Mater Interfaces; 2015 Apr; 7(15):7987-94. PubMed ID: 25816196 [TBL] [Abstract][Full Text] [Related]
2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
3. Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au-Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation. Zanganeh N; Guda VK; Toghiani H; Keith JM ACS Appl Mater Interfaces; 2018 Feb; 10(5):4776-4785. PubMed ID: 29328617 [TBL] [Abstract][Full Text] [Related]
4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
5. CO oxidation on inverse CeO(x)/Cu(111) catalysts: high catalytic activity and ceria-promoted dissociation of O2. Yang F; Graciani J; Evans J; Liu P; Hrbek J; Sanz JF; Rodriguez JA J Am Chem Soc; 2011 Mar; 133(10):3444-51. PubMed ID: 21341793 [TBL] [Abstract][Full Text] [Related]
6. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298 [TBL] [Abstract][Full Text] [Related]
7. Crystal-plane-controlled surface chemistry and catalytic performance of surfactant-free Cu2 O nanocrystals. Hua Q; Cao T; Bao H; Jiang Z; Huang W ChemSusChem; 2013 Oct; 6(10):1966-72. PubMed ID: 24106201 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Catalytic Performance of (CuO) Yang H; Pan Y; Xu Y; Yang Y; Sun G Chempluschem; 2015 May; 80(5):886-894. PubMed ID: 31973336 [TBL] [Abstract][Full Text] [Related]
9. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
10. Catalytic CO Oxidation by O Wang LN; Li XN; Jiang LX; Yang B; Liu QY; Xu HG; Zheng WJ; He SG Angew Chem Int Ed Engl; 2018 Mar; 57(13):3349-3353. PubMed ID: 29377393 [TBL] [Abstract][Full Text] [Related]
11. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. Xiao C; Maligal-Ganesh RV; Li T; Qi Z; Guo Z; Brashler KT; Goes S; Li X; Goh TW; Winans RE; Huang W ChemSusChem; 2013 Oct; 6(10):1915-22. PubMed ID: 24039118 [TBL] [Abstract][Full Text] [Related]
12. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts. Han W; Zhang P; Pan X; Tang Z; Lu G J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591 [TBL] [Abstract][Full Text] [Related]
14. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts. Wang F; Zhang H; He D Environ Technol; 2014; 35(1-4):347-54. PubMed ID: 24600874 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2. Wang Z; Li R; Chen Q Chemphyschem; 2015 Aug; 16(11):2415-23. PubMed ID: 26017784 [TBL] [Abstract][Full Text] [Related]
16. Revealing the intrinsic nature of Cu- and Ce-doped Mn Hu Z; Zhou X; Zhang T; Wu Z; Li J; Wang W; Gao E; Zhu J; Yao S Dalton Trans; 2024 Oct; 53(41):16978-16992. PubMed ID: 39352221 [TBL] [Abstract][Full Text] [Related]
17. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136 [TBL] [Abstract][Full Text] [Related]
18. Copper Nanoparticles Supported on ZIF-8: Comparison of Cu(II) Reduction Processes and Application as Benzyl Alcohol Oxidation Catalysts. Zan Y; Ben Romdhane F; Miche A; Méthivier C; Krafft JM; Jolivalt C; Reboul J ACS Appl Mater Interfaces; 2023 Aug; 15(32):38716-38728. PubMed ID: 37523484 [TBL] [Abstract][Full Text] [Related]
19. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552 [TBL] [Abstract][Full Text] [Related]
20. Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Khan WU; Yu IKM; Sun Y; Polson MIJ; Golovko V; Lam FLY; Ogino I; Tsang DCW; Yip ACK Environ Pollut; 2021 Jun; 279():116899. PubMed ID: 33743438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]