BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2581620)

  • 1. Effect of FS (alpha 2 gamma beta s) hybrid hemoglobin on Hb S nucleation and aggregation.
    Nibu K; Adachi K
    Biochim Biophys Acta; 1985 May; 829(1):97-102. PubMed ID: 2581620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of cross-linked asymmetrical hybrid hemoglobins by double-headed aspirin.
    Kikugawa K; Adachi K; Kosugi H; Asakura T
    Hemoglobin; 1983; 7(6):533-53. PubMed ID: 6668187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerization of AS hybrid hemoglobin. Potent inhibitory effect of hemoglobin A on the polymerization of AS hybrid hemoglobin.
    Adachi K; Asakura T
    J Biol Chem; 1984 Feb; 259(4):2108-12. PubMed ID: 6698959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerization of recombinant hemoglobin F gamma E6V and hemoglobin F gamma E6V, gamma Q87T alone, and in mixtures with hemoglobin S.
    Adachi K; Pang J; Konitzer P; Surrey S
    Blood; 1996 Feb; 87(4):1617-24. PubMed ID: 8608256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chloride ion on the oxygen affinity of hemoglobin York (alpha 2 beta 2(146)Pro) and S-York hybrid hemoglobin (alpha 2 beta S beta York). Role of the beta 82 lysyl and beta 146 histydyl residues in chloride binding to hemoglobin.
    Adachi H; Asakura T; Adachi K
    J Biol Chem; 1983 Nov; 258(22):13422-4. PubMed ID: 6417128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biochemical and biophysical characterization of recombinant mutants of fetal hemoglobin and their interaction with sickle cell hemoglobin.
    Larson SC; Fisher GW; Ho NT; Shen TJ; Ho C
    Biochemistry; 1999 Jul; 38(29):9549-55. PubMed ID: 10413533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of gamma 87 Gln in the inhibition of hemoglobin S polymerization by hemoglobin F.
    Adachi K; Konitzer P; Surrey S
    J Biol Chem; 1994 Apr; 269(13):9562-7. PubMed ID: 7511590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural features required for the reactivity and intracellular transport of bis(3,5-dibromosalicyl)fumarate and related anti-sickling compounds that modify hemoglobin S at the 2,3-diphosphoglycerate binding site.
    Chatterjee R; Iwai Y; Walder RY; Walder JA
    J Biol Chem; 1984 Dec; 259(23):14863-73. PubMed ID: 6501320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diaspirins that cross-link beta chains of hemoglobin: bis(3,5-dibromosalicyl) succinate and bis(3,5-dibromosalicyl) fumarate.
    Walder JA; Zaugg RH; Walder RY; Steele JM; Klotz IM
    Biochemistry; 1979 Oct; 18(20):4265-70. PubMed ID: 486423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation of hemoglobin S modified by bifunctional imidoesters.
    Adachi K; Kikugawa K; Asakura T
    Biochim Biophys Acta; 1983 Feb; 742(3):597-606. PubMed ID: 6838892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of crosslinking by bis(3,5-dibromosalicyl) fumarate on the autoxidation of hemoglobin.
    Yang T; Olsen KW
    Biochem Biophys Res Commun; 1989 Sep; 163(2):733-8. PubMed ID: 2783118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of binary mixtures of hemoglobin S and carbamylated hemoglobin S.
    Ip CY; Asakura T; Adachi K
    J Biol Chem; 1984 Jan; 259(1):244-8. PubMed ID: 6706933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of crosslinking on the thermal stability of hemoglobins. II. The stabilization of met-, cyanomet-, and carbonmonoxyhemoglobins A and S with bis(3,5-dibromosalicyl) fumarate.
    Yang T; Olsen KW
    Arch Biochem Biophys; 1988 Mar; 261(2):283-90. PubMed ID: 3355152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced inhibition of polymerization of sickle cell hemoglobin in the presence of recombinant mutants of human fetal hemoglobin with substitutions at position 43 in the gamma-chain.
    Tam MF; Chen J; Tam TC; Tsai CH; Shen TJ; Simplaceanu V; Feinstein TN; Barrick D; Ho C
    Biochemistry; 2005 Sep; 44(36):12188-95. PubMed ID: 16142917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton nuclear magnetic resonance investigation of cross-linked asymmetrically modified hemoglobins: influence of the salt bridges on tertiary and quaternary structures of hemoglobin.
    Miura S; Ho C
    Biochemistry; 1984 May; 23(11):2492-9. PubMed ID: 6477880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium oxygen binding to human hemoglobin cross-linked between the alpha chains by bis(3,5-dibromosalicyl) fumarate.
    Vandegriff KD; Medina F; Marini MA; Winslow RM
    J Biol Chem; 1989 Oct; 264(30):17824-33. PubMed ID: 2808353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the reaction sequences associated with drug-induced oxidation of hemoglobins E, S, A, and F.
    Macdonald VW; Charache S
    J Lab Clin Med; 1983 Nov; 102(5):762-72. PubMed ID: 6195277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amino acid at the beta 6 position on surface hydrophobicity, stability, solubility, and the kinetics of polymerization of hemoglobin. Comparisons among Hb A (Glu beta 6), Hb C (Lys beta 6), Hb Machida (Gln beta 6), and Hb S (Val beta 6).
    Adachi K; Kim J; Travitz R; Harano T; Asakura T
    J Biol Chem; 1987 Sep; 262(27):12920-5. PubMed ID: 2888754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced oxidation of bis(3,5-dibromosalicyl) fumarate alpha-alpha cross linked hemoglobin by free radicals generated by xanthine/xanthine oxidase.
    Samaja M; Motterlini R; Rovida E
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):517-24. PubMed ID: 7994373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.