These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 25816252)
1. A novel GTP-binding inhibitor, FX2149, attenuates LRRK2 toxicity in Parkinson's disease models. Li T; He X; Thomas JM; Yang D; Zhong S; Xue F; Smith WW PLoS One; 2015; 10(3):e0122461. PubMed ID: 25816252 [TBL] [Abstract][Full Text] [Related]
2. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. Li T; Yang D; Zhong S; Thomas JM; Xue F; Liu J; Kong L; Voulalas P; Hassan HE; Park JS; MacKerell AD; Smith WW Hum Mol Genet; 2014 Dec; 23(23):6212-22. PubMed ID: 24993787 [TBL] [Abstract][Full Text] [Related]
3. GTP-binding inhibitors increase LRRK2-linked ubiquitination and Lewy body-like inclusions. Thomas JM; Wang X; Guo G; Li T; Dai B; Nucifora LG; Nucifora FC; Liu Z; Xue F; Liu C; Ross CA; Smith WW J Cell Physiol; 2020 Oct; 235(10):7309-7320. PubMed ID: 32180220 [TBL] [Abstract][Full Text] [Related]
4. Identification of chemicals to inhibit the kinase activity of leucine-rich repeat kinase 2 (LRRK2), a Parkinson's disease-associated protein. Yun H; Heo HY; Kim HH; DooKim N; Seol W Bioorg Med Chem Lett; 2011 May; 21(10):2953-7. PubMed ID: 21474311 [TBL] [Abstract][Full Text] [Related]
5. 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Thomas JM; Li T; Yang W; Xue F; Fishman PS; Smith WW Front Aging Neurosci; 2016; 8():337. PubMed ID: 28119604 [TBL] [Abstract][Full Text] [Related]
6. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048 [TBL] [Abstract][Full Text] [Related]
7. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sheng Z; Zhang S; Bustos D; Kleinheinz T; Le Pichon CE; Dominguez SL; Solanoy HO; Drummond J; Zhang X; Ding X; Cai F; Song Q; Li X; Yue Z; van der Brug MP; Burdick DJ; Gunzner-Toste J; Chen H; Liu X; Estrada AA; Sweeney ZK; Scearce-Levie K; Moffat JG; Kirkpatrick DS; Zhu H Sci Transl Med; 2012 Dec; 4(164):164ra161. PubMed ID: 23241745 [TBL] [Abstract][Full Text] [Related]
8. MLi-2, a Potent, Selective, and Centrally Active Compound for Exploring the Therapeutic Potential and Safety of LRRK2 Kinase Inhibition. Fell MJ; Mirescu C; Basu K; Cheewatrakoolpong B; DeMong DE; Ellis JM; Hyde LA; Lin Y; Markgraf CG; Mei H; Miller M; Poulet FM; Scott JD; Smith MD; Yin Z; Zhou X; Parker EM; Kennedy ME; Morrow JA J Pharmacol Exp Ther; 2015 Dec; 355(3):397-409. PubMed ID: 26407721 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities. Liu M; Dobson B; Glicksman MA; Yue Z; Stein RL Biochemistry; 2010 Mar; 49(9):2008-17. PubMed ID: 20146535 [TBL] [Abstract][Full Text] [Related]
10. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models. Kramer T; Lo Monte F; Göring S; Okala Amombo GM; Schmidt B ACS Chem Neurosci; 2012 Mar; 3(3):151-60. PubMed ID: 22860184 [TBL] [Abstract][Full Text] [Related]
12. Can the increasing number of newly developed leucine-rich repeat kinase 2 inhibitors validate or invalidate a potential disease-modifying therapeutic approach for Parkinson's disease? Taymans JM Expert Opin Ther Pat; 2014 Jul; 24(7):727-30. PubMed ID: 24875782 [TBL] [Abstract][Full Text] [Related]
13. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Ito G; Okai T; Fujino G; Takeda K; Ichijo H; Katada T; Iwatsubo T Biochemistry; 2007 Feb; 46(5):1380-8. PubMed ID: 17260967 [TBL] [Abstract][Full Text] [Related]
14. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. Tsika E; Nguyen AP; Dusonchet J; Colin P; Schneider BL; Moore DJ Neurobiol Dis; 2015 May; 77():49-61. PubMed ID: 25731749 [TBL] [Abstract][Full Text] [Related]
15. A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry. Leveridge M; Collier L; Edge C; Hardwicke P; Leavens B; Ratcliffe S; Rees M; Stasi LP; Nadin A; Reith AD J Biomol Screen; 2016 Feb; 21(2):145-55. PubMed ID: 26403521 [TBL] [Abstract][Full Text] [Related]
16. Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Gómez-Suaga P; Fdez E; Fernández B; Martínez-Salvador M; Blanca Ramírez M; Madero-Pérez J; Rivero-Ríos P; Fuentes JM; Hilfiker S Neuropharmacology; 2014 Oct; 85():45-56. PubMed ID: 24863040 [TBL] [Abstract][Full Text] [Related]
17. Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Zhang J; Deng X; Choi HG; Alessi DR; Gray NS Bioorg Med Chem Lett; 2012 Mar; 22(5):1864-9. PubMed ID: 22335897 [TBL] [Abstract][Full Text] [Related]
19. Inhibitors of leucine-rich repeat kinase 2 (LRRK2): progress and promise for the treatment of Parkinson's disease. Gilligan PJ Curr Top Med Chem; 2015; 15(10):927-38. PubMed ID: 25832719 [TBL] [Abstract][Full Text] [Related]
20. Alternative to LRRK2-IN-1 for Pharmacological Studies of Parkinson's Disease. Koshibu K; van Asperen J; Gerets H; Garcia-Ladona J; Lorthioir O; Courade JP Pharmacology; 2015; 96(5-6):240-7. PubMed ID: 26382237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]