BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 25816285)

  • 1. Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter.
    Rozado D; Duenser A; Howell B
    PLoS One; 2015; 10(3):e0121262. PubMed ID: 25816285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface.
    Lin BS; Pan JS; Chu TY; Lin BS
    J Med Syst; 2016 Mar; 40(3):71. PubMed ID: 26748791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy.
    Müller-Putz GR; Daly I; Kaiser V
    J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of performance evaluation for motor-imagery based BCI.
    Thomas E; Dyson M; Clerc M
    J Neural Eng; 2013 Jun; 10(3):031001. PubMed ID: 23639955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface.
    Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H
    Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
    Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC
    Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.
    Lu N; Li T; Pan J; Ren X; Feng Z; Miao H
    Comput Biol Med; 2015 May; 60():32-9. PubMed ID: 25747342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges.
    Padfield N; Zabalza J; Zhao H; Masero V; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.
    Blokland Y; Spyrou L; Thijssen D; Eijsvogels T; Colier W; Floor-Westerdijk M; Vlek R; Bruhn J; Farquhar J
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):222-9. PubMed ID: 24608682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation of EEG spatial filters from resting to motor imagery using independent component analysis.
    Wang Y; Wang YT; Jung TP
    PLoS One; 2012; 7(5):e37665. PubMed ID: 22666377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.