These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25816288)

  • 1. Comparative genomic analysis reveals a critical role of de novo nucleotide biosynthesis for Saccharomyces cerevisiae virulence.
    Pérez-Torrado R; Llopis S; Perrone B; Gómez-Pastor R; Hube B; Querol A
    PLoS One; 2015; 10(3):e0122382. PubMed ID: 25816288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains.
    Llopis S; Querol A; Heyken A; Hube B; Jespersen L; Fernández-Espinar MT; Pérez-Torrado R
    BMC Genomics; 2012 Aug; 13():419. PubMed ID: 22916735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic potential of Saccharomyces strains isolated from dietary supplements.
    Llopis S; Hernández-Haro C; Monteoliva L; Querol A; Molina M; Fernández-Espinar MT
    PLoS One; 2014; 9(5):e98094. PubMed ID: 24879417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of purine nucleotide biosynthesis pathways modulates cisplatin cytotoxicity in Saccharomyces cerevisiae.
    Kowalski D; Pendyala L; Daignan-Fornier B; Howell SB; Huang RY
    Mol Pharmacol; 2008 Oct; 74(4):1092-100. PubMed ID: 18612078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of purine nucleotide biosynthesis in mutant Saccharomyces cerevisiae yeasts with increased sensitivity of the pathway for de novo synthesis to inhibition by exogenous guanine].
    Smolina VS; Andrianova VM; Bekker ML
    Genetika; 1978 Sep; 14(9):1495-1502. PubMed ID: 214373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of purine nucleotide biosynthesis: in yeast and beyond.
    Rolfes RJ
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):786-90. PubMed ID: 17052198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits.
    de Llanos R; Llopis S; Molero G; Querol A; Gil C; Fernández-Espinar MT
    Int J Food Microbiol; 2011 Jan; 144(3):393-9. PubMed ID: 21081253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro.
    Pérez-Torrado R; Llopis S; Jespersen L; Fernández-Espinar T; Querol A
    Int J Food Microbiol; 2012 Jun; 157(1):59-64. PubMed ID: 22609000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins.
    Salinas F; Mandaković D; Urzua U; Massera A; Miras S; Combina M; Ganga MA; Martínez C
    J Appl Microbiol; 2010 May; 108(5):1850-8. PubMed ID: 20163487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and non-clinical isolates of Saccharomyces cerevisiae.
    de Llanos R; Hernández-Haro C; Barrio E; Querol A; Fernández-Espinar MT; Molina M
    Yeast; 2010 Aug; 27(8):549-61. PubMed ID: 20586115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.
    Deregowska A; Skoneczny M; Adamczyk J; Kwiatkowska A; Rawska E; Skoneczna A; Lewinska A; Wnuk M
    Oncotarget; 2015 Oct; 6(31):30650-63. PubMed ID: 26384347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of infective Saccharomyces cerevisiae strains reveals their food origin.
    Morard M; Pérez-Través L; Perpiñá C; Lairón-Peris M; Collado MC; Pérez-Torrado R; Querol A
    Sci Rep; 2023 Jun; 13(1):10435. PubMed ID: 37369738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae.
    Iglesias-Gato D; Martín-Marcos P; Santos MA; Hinnebusch AG; Tamame M
    Genetics; 2011 Jan; 187(1):105-22. PubMed ID: 20980241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model.
    Hernández-Haro C; Llopis S; Molina M; Monteoliva L; Gil C
    J Proteomics; 2015 Jan; 112():14-26. PubMed ID: 25173100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of clinical and food Saccharomyces cerevisiae isolates on the basis of potential virulence factors.
    de Llanos R; Fernández-Espinar MT; Querol A
    Antonie Van Leeuwenhoek; 2006 Oct; 90(3):221-31. PubMed ID: 16871421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species identification and virulence attributes of Saccharomyces boulardii (nom. inval.).
    McCullough MJ; Clemons KV; McCusker JH; Stevens DA
    J Clin Microbiol; 1998 Sep; 36(9):2613-7. PubMed ID: 9705402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of current methods for characterizing virulence and pathogenicity potential of industrial Saccharomyces cerevisiae strains towards humans.
    Anoop V; Rotaru S; Shwed PS; Tayabali AF; Arvanitakis G
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26195617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.
    Stambuk BU; Dunn B; Alves SL; Duval EH; Sherlock G
    Genome Res; 2009 Dec; 19(12):2271-8. PubMed ID: 19897511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH).
    Wnuk M; Panek A; Golec E; Magda M; Deregowska A; Adamczyk J; Lewinska A
    J Biotechnol; 2015 Sep; 210():52-6. PubMed ID: 26116136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.