These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25816304)

  • 1. Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment.
    Bituh T; Petrinec B; Skoko B; Vučić Z; Marović G
    Arh Hig Rada Toksikol; 2015 Mar; 66(1):31-40. PubMed ID: 25816304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria.
    Okeji MC; Agwu KK; Idigo FU
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R; da Costa Lauria D
    J Environ Radioact; 2014 Oct; 136():188-94. PubMed ID: 24971522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioactive characterization of phosphogypsum from Imbituba, Brazil.
    Borges RC; Ribeiro FC; Lauria Dda C; Bernedo AV
    J Environ Radioact; 2013 Dec; 126():188-95. PubMed ID: 24051335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan.
    Zielinski RA; Al-Hwaiti MS; Budahn JR; Ranville JF
    Environ Geochem Health; 2011 Apr; 33(2):149-65. PubMed ID: 20623320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.
    Abril JM; García-Tenorio R; Enamorado SM; Hurtado MD; Andreu L; Delgado A
    Sci Total Environ; 2008 Sep; 403(1-3):80-8. PubMed ID: 18602676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soils from southwestern Spain.
    El-Mrabet R; Abril JM; Periáñez R; Manjón G; García-Tenorio R; Delgado A; Andreu L
    J Environ Qual; 2003; 32(4):1262-8. PubMed ID: 12931881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiological characterisation of disposed phosphogypsum in Brazil: evaluation of the occupational exposure and environmental impact.
    Santos AJ; Silva PS; Mazzilli BP; Fávaro DI
    Radiat Prot Dosimetry; 2006; 121(2):179-85. PubMed ID: 16531459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration.
    Gázquez MJ; Mantero J; Mosqueda F; Bolívar JP; García-Tenorio R
    J Environ Radioact; 2014 Nov; 137():79-87. PubMed ID: 25014882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural radioactivity and radiation hazard assessment of industrial wastes from the coastal phosphate treatment plants of Gabes (Tunisia, Southern Mediterranean Sea).
    El Zrelli R; Rabaoui L; van Beek P; Castet S; Souhaut M; Grégoire M; Courjault-Radé P
    Mar Pollut Bull; 2019 Sep; 146():454-461. PubMed ID: 31426180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on lead (210Pb) and polonium (210Po) contamination from phosphogypsum in the environment of Wiślinka (northern Poland).
    Boryło A; Olszewski G; Skwarzec B
    Environ Sci Process Impacts; 2013 Aug; 15(8):1622-8. PubMed ID: 23828304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impact and management of phosphogypsum.
    Tayibi H; Choura M; López FA; Alguacil FJ; López-Delgado A
    J Environ Manage; 2009 Jun; 90(8):2377-86. PubMed ID: 19406560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (Paper 1).
    Louw I
    J Environ Radioact; 2020 Jun; 217():106214. PubMed ID: 32217246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural radionuclide concentrations in processed materials from Thai mineral industries.
    Chanyotha S; Kranrod C; Chankow N; Kritsananuwat R; Sriploy P; Pangza K
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):71-5. PubMed ID: 22908347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exhalation of (222)Rn from phosphogypsum piles located at the Southwest of Spain.
    Dueñas C; Liger E; Cañete S; Pérez M; Bolívar JP
    J Environ Radioact; 2007; 95(2-3):63-74. PubMed ID: 17386964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil.
    Saueia CH; Mazzilli BP
    J Environ Radioact; 2006; 89(3):229-39. PubMed ID: 16849030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of natural radionuclides mobility in a phosphogypsum disposal area.
    Pérez-Moreno SM; Gázquez MJ; Pérez-López R; Vioque I; Bolívar JP
    Chemosphere; 2018 Nov; 211():775-783. PubMed ID: 30099162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum.
    Nisti MB; Saueia CR; Malheiro LH; Groppo GH; Mazzilli BP
    J Environ Radioact; 2015 Jun; 144():120-6. PubMed ID: 25841114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.