These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25816374)

  • 1. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for metal-semiconductor transitions in twisted and collapsed double-walled carbon nanotubes by scanning tunneling microscopy.
    Giusca CE; Tison Y; Silva SR
    Nano Lett; 2008 Oct; 8(10):3350-6. PubMed ID: 18783281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenated double wall carbon nanotubes.
    Denis PA; Iribarne F; Faccio R
    J Chem Phys; 2009 May; 130(19):194704. PubMed ID: 19466852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes.
    Okada S; Oshiyama A
    Phys Rev Lett; 2003 Nov; 91(21):216801. PubMed ID: 14683326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbene-functionalized single-walled carbon nanotubes and their electrical properties.
    Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z
    Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic and semiconducting single-walled carbon nanotubes: differentiating individual SWCNTs by their carbon 1s spectra.
    Rossouw D; Botton GA; Najafi E; Lee V; Hitchcock AP
    ACS Nano; 2012 Dec; 6(12):10965-72. PubMed ID: 23176188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.