These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25816743)

  • 1. A stochastic model of eye lens growth.
    Šikić H; Shi Y; Lubura S; Bassnett S
    J Theor Biol; 2015 Jul; 376():15-31. PubMed ID: 25816743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens.
    Mochizuki T; Masai I
    Dev Growth Differ; 2014 Jun; 56(5):387-401. PubMed ID: 24720470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The penny pusher: a cellular model of lens growth.
    Shi Y; De Maria A; Lubura S; Šikić H; Bassnett S
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(2):799-809. PubMed ID: 25515574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic model for the morphogenesis of the late vertebrate lens.
    Marzec CJ; Hendrix RW
    J Theor Biol; 1997 Jun; 186(3):349-72. PubMed ID: 9219671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lens growth process.
    Bassnett S; Šikić H
    Prog Retin Eye Res; 2017 Sep; 60():181-200. PubMed ID: 28411123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation.
    de Iongh RU; Wederell E; Lovicu FJ; McAvoy JW
    Cells Tissues Organs; 2005; 179(1-2):43-55. PubMed ID: 15942192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-specific expression of PDGF-A alters lens growth and development.
    Reneker LW; Overbeek PA
    Dev Biol; 1996 Dec; 180(2):554-65. PubMed ID: 8954727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultrastructure of epithelial and fiber cells in the crystalline lens.
    Kuszak JR
    Int Rev Cytol; 1995; 163():305-50. PubMed ID: 8522422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling.
    Shin EH; Zhao G; Wang Q; Lovicu FJ
    Dev Biol; 2015 Oct; 406(2):129-46. PubMed ID: 26375880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of anterior segment development by TGF-beta1 overexpression in the eyes of transgenic mice.
    Flügel-Koch C; Ohlmann A; Piatigorsky J; Tamm ER
    Dev Dyn; 2002 Oct; 225(2):111-25. PubMed ID: 12242711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenetic movements during the early development of the chick eye. A light microscopic and spatial reconstructive study.
    Schook P
    Acta Morphol Neerl Scand; 1980 Mar; 18(1):1-30. PubMed ID: 7395551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth factor regulation of lens development.
    Lovicu FJ; McAvoy JW
    Dev Biol; 2005 Apr; 280(1):1-14. PubMed ID: 15766743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated insulin signaling disrupts the growth and differentiation pattern of the mouse lens.
    Xie L; Chen H; Overbeek PA; Reneker LW
    Mol Vis; 2007 Mar; 13():397-407. PubMed ID: 17417601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deregulation of lens epithelial cell proliferation and differentiation during the development of TGFbeta-induced anterior subcapsular cataract.
    Lovicu FJ; Ang S; Chorazyczewska M; McAvoy JW
    Dev Neurosci; 2004; 26(5-6):446-55. PubMed ID: 15855773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation during the early stages of human eye development.
    Bozanić D; Saraga-Babić M
    Anat Embryol (Berl); 2004 Aug; 208(5):381-8. PubMed ID: 15252731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomerase activity in lens epithelial cells of normal and cataractous lenses.
    Colitz CM; Davidson MG; McGAHAN MC
    Exp Eye Res; 1999 Dec; 69(6):641-9. PubMed ID: 10620393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of thrombospondin-1 in post-operative capsular fibrosis and its down-regulation in lens cells during lens fiber formation.
    Saika S; Miyamoto T; Ishida I; Barbour WK; Ohnishi Y; Ooshima A
    Exp Eye Res; 2004 Aug; 79(2):147-56. PubMed ID: 15325561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lens cells: more than meets the eye.
    Tholozan FM; Quinlan RA
    Int J Biochem Cell Biol; 2007; 39(10):1754-9. PubMed ID: 17707680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ras signaling is essential for lens cell proliferation and lens growth during development.
    Xie L; Overbeek PA; Reneker LW
    Dev Biol; 2006 Oct; 298(2):403-14. PubMed ID: 16889766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.