These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 25816914)
1. PEGylated Fmoc-Amino Acid Conjugates as Effective Nanocarriers for Improved Drug Delivery. Zhang P; Huang Y; Kwon YT; Li S Mol Pharm; 2015 May; 12(5):1680-90. PubMed ID: 25816914 [TBL] [Abstract][Full Text] [Related]
2. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Zhang P; Li J; Ghazwani M; Zhao W; Huang Y; Zhang X; Venkataramanan R; Li S Biomaterials; 2015 Oct; 67():104-14. PubMed ID: 26210177 [TBL] [Abstract][Full Text] [Related]
3. A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Zhang P; Huang Y; Liu H; Marquez RT; Lu J; Zhao W; Zhang X; Gao X; Li J; Venkataramanan R; Xu L; Li S Biomaterials; 2014 Aug; 35(25):7146-56. PubMed ID: 24856103 [TBL] [Abstract][Full Text] [Related]
4. Design and evaluation of a PEGylated lipopeptide equipped with drug-interactive motifs as an improved drug carrier. Zhang P; Lu J; Huang Y; Zhao W; Zhang Y; Zhang X; Li J; Venkataramanan R; Gao X; Li S AAPS J; 2014 Jan; 16(1):114-24. PubMed ID: 24281690 [TBL] [Abstract][Full Text] [Related]
5. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
6. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
7. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Chen D; Yu H; Sun K; Liu W; Wang H Drug Deliv; 2014 Jun; 21(4):258-64. PubMed ID: 24102086 [TBL] [Abstract][Full Text] [Related]
8. Core-cross-linked polymeric micelles as paclitaxel carriers. Shuai X; Merdan T; Schaper AK; Xi F; Kissel T Bioconjug Chem; 2004; 15(3):441-8. PubMed ID: 15149170 [TBL] [Abstract][Full Text] [Related]
9. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Zhao P; Wang H; Yu M; Liao Z; Wang X; Zhang F; Ji W; Wu B; Han J; Zhang H; Wang H; Chang J; Niu R Eur J Pharm Biopharm; 2012 Jun; 81(2):248-56. PubMed ID: 22446630 [TBL] [Abstract][Full Text] [Related]
10. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages. Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226 [TBL] [Abstract][Full Text] [Related]
11. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123 [TBL] [Abstract][Full Text] [Related]
12. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Li J; Yin T; Wang L; Yin L; Zhou J; Huo M Int J Pharm; 2015 Apr; 483(1-2):38-48. PubMed ID: 25655715 [TBL] [Abstract][Full Text] [Related]
13. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. Xu Z; Zhu S; Wang M; Li Y; Shi P; Huang X ACS Appl Mater Interfaces; 2015 Jan; 7(2):1355-63. PubMed ID: 25546399 [TBL] [Abstract][Full Text] [Related]
15. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505 [TBL] [Abstract][Full Text] [Related]
16. Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel. Battogtokh G; Ko YT J Drug Target; 2014 Nov; 22(9):813-21. PubMed ID: 24964055 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids. Bojarska J; Remko M; Madura ID; Kaczmarek K; Zabrocki J; Wolf WM Acta Crystallogr C Struct Chem; 2020 Apr; 76(Pt 4):328-345. PubMed ID: 32229714 [TBL] [Abstract][Full Text] [Related]
18. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Li J; Huo M; Wang J; Zhou J; Mohammad JM; Zhang Y; Zhu Q; Waddad AY; Zhang Q Biomaterials; 2012 Mar; 33(7):2310-20. PubMed ID: 22166223 [TBL] [Abstract][Full Text] [Related]
19. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
20. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Tao K; Levin A; Adler-Abramovich L; Gazit E Chem Soc Rev; 2016 Jul; 45(14):3935-53. PubMed ID: 27115033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]