These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 25816966)
1. Prediction methods of skin burn for performance evaluation of thermal protective clothing. Zhai LN; Li J Burns; 2015 Nov; 41(7):1385-96. PubMed ID: 25816966 [TBL] [Abstract][Full Text] [Related]
2. Analysing performance of protective clothing upon hot liquid exposure using instrumented spray manikin. Lu Y; Song G; Li J Ann Occup Hyg; 2013 Jul; 57(6):793-804. PubMed ID: 23328808 [TBL] [Abstract][Full Text] [Related]
3. Thermal performance assessment of heat resistant fabrics based on a new thermal wave model of skin heat transfer. Zhu F; Zhang W; Song G Int J Occup Saf Ergon; 2006; 12(1):43-51. PubMed ID: 16553999 [TBL] [Abstract][Full Text] [Related]
4. The uncertainty in burn prediction as a result of variable skin parameters: an experimental evaluation of burn-protective outfits. Gasperin M; Juricić D Burns; 2009 Nov; 35(7):970-82. PubMed ID: 19446961 [TBL] [Abstract][Full Text] [Related]
5. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test. Lu Y; Song G; Wang F Ann Occup Hyg; 2015 Mar; 59(2):232-42. PubMed ID: 25349371 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evaluation of thermal protective clothing performance upon hot liquid splash. Gholamreza F; Song G Ann Occup Hyg; 2013 Jul; 57(6):805-22. PubMed ID: 23801030 [TBL] [Abstract][Full Text] [Related]
7. The effect of moisture content within multilayer protective clothing on protection from radiation and steam. Su Y; Li J; Song G Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297 [TBL] [Abstract][Full Text] [Related]
8. An empirical analysis of thermal protective performance of fabrics used in protective clothing. Mandal S; Song G Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076 [TBL] [Abstract][Full Text] [Related]
9. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. Huang J Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547 [TBL] [Abstract][Full Text] [Related]
10. Investigating the influencing factors and prediction models of skin burns for firefighters' occupational safety. Zhang X; Tian M; Li J Int J Occup Saf Ergon; 2024 Sep; 30(3):663-676. PubMed ID: 38516740 [TBL] [Abstract][Full Text] [Related]
11. Burns and military clothing. McLean AD J R Army Med Corps; 2001 Feb; 147(1):97-106. PubMed ID: 11307683 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Song G; Chitrphiromsri P; Ding D Int J Occup Saf Ergon; 2008; 14(1):89-106. PubMed ID: 18394330 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Textiles Used in Chefs' Uniforms for Protection Against Thermal Hazards Encountered in the Kitchen Environment. Zhang H; McQueen RH; Batcheller JC; Ehnes BL; Paskaluk SA Ann Occup Hyg; 2015 Oct; 59(8):1058-73. PubMed ID: 25925745 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge. He J; Lu Y; Chen Y; Li J J Hazard Mater; 2017 Sep; 338():76-84. PubMed ID: 28531661 [TBL] [Abstract][Full Text] [Related]
15. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Lu Y; Song G; Li J Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820 [TBL] [Abstract][Full Text] [Related]
16. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects. Raj PK J Hazard Mater; 2008 Sep; 157(2-3):247-59. PubMed ID: 18291577 [TBL] [Abstract][Full Text] [Related]
17. A test battery related to ergonomics of protective clothing. Havenith G; Heus R Appl Ergon; 2004 Jan; 35(1):3-20. PubMed ID: 14985136 [TBL] [Abstract][Full Text] [Related]
18. Talk to the Hand: U.S. Army Biophysical Testing. Santee WR; Potter AW; Friedl KE Mil Med; 2017 Jul; 182(7):e1702-e1705. PubMed ID: 28810960 [TBL] [Abstract][Full Text] [Related]
19. Influence of Initial Moisture Content on Heat and Moisture Transfer in Firefighters' Protective Clothing. Huang D; He S ScientificWorldJournal; 2017; 2017():9365814. PubMed ID: 28466066 [TBL] [Abstract][Full Text] [Related]
20. Comparing the flammability of fabrics in accordance with EN 531 and ENV 50354. Mäkinen H; Mustonen SS Int J Occup Saf Ergon; 2004; 10(3):207-13. PubMed ID: 15377405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]