BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25816966)

  • 1. Prediction methods of skin burn for performance evaluation of thermal protective clothing.
    Zhai LN; Li J
    Burns; 2015 Nov; 41(7):1385-96. PubMed ID: 25816966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysing performance of protective clothing upon hot liquid exposure using instrumented spray manikin.
    Lu Y; Song G; Li J
    Ann Occup Hyg; 2013 Jul; 57(6):793-804. PubMed ID: 23328808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal performance assessment of heat resistant fabrics based on a new thermal wave model of skin heat transfer.
    Zhu F; Zhang W; Song G
    Int J Occup Saf Ergon; 2006; 12(1):43-51. PubMed ID: 16553999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The uncertainty in burn prediction as a result of variable skin parameters: an experimental evaluation of burn-protective outfits.
    Gasperin M; Juricić D
    Burns; 2009 Nov; 35(7):970-82. PubMed ID: 19446961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.
    Lu Y; Song G; Wang F
    Ann Occup Hyg; 2015 Mar; 59(2):232-42. PubMed ID: 25349371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory evaluation of thermal protective clothing performance upon hot liquid splash.
    Gholamreza F; Song G
    Ann Occup Hyg; 2013 Jul; 57(6):805-22. PubMed ID: 23801030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of moisture content within multilayer protective clothing on protection from radiation and steam.
    Su Y; Li J; Song G
    Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical analysis of thermal protective performance of fabrics used in protective clothing.
    Mandal S; Song G
    Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burns and military clothing.
    McLean AD
    J R Army Med Corps; 2001 Feb; 147(1):97-106. PubMed ID: 11307683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions.
    Song G; Chitrphiromsri P; Ding D
    Int J Occup Saf Ergon; 2008; 14(1):89-106. PubMed ID: 18394330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Textiles Used in Chefs' Uniforms for Protection Against Thermal Hazards Encountered in the Kitchen Environment.
    Zhang H; McQueen RH; Batcheller JC; Ehnes BL; Paskaluk SA
    Ann Occup Hyg; 2015 Oct; 59(8):1058-73. PubMed ID: 25925745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge.
    He J; Lu Y; Chen Y; Li J
    J Hazard Mater; 2017 Sep; 338():76-84. PubMed ID: 28531661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.
    Lu Y; Song G; Li J
    Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects.
    Raj PK
    J Hazard Mater; 2008 Sep; 157(2-3):247-59. PubMed ID: 18291577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A test battery related to ergonomics of protective clothing.
    Havenith G; Heus R
    Appl Ergon; 2004 Jan; 35(1):3-20. PubMed ID: 14985136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Talk to the Hand: U.S. Army Biophysical Testing.
    Santee WR; Potter AW; Friedl KE
    Mil Med; 2017 Jul; 182(7):e1702-e1705. PubMed ID: 28810960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Initial Moisture Content on Heat and Moisture Transfer in Firefighters' Protective Clothing.
    Huang D; He S
    ScientificWorldJournal; 2017; 2017():9365814. PubMed ID: 28466066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the flammability of fabrics in accordance with EN 531 and ENV 50354.
    Mäkinen H; Mustonen SS
    Int J Occup Saf Ergon; 2004; 10(3):207-13. PubMed ID: 15377405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal protective uniforms and hoods: impact of design modifications and water content on burn prevention in New York City firefighters: laboratory and field results.
    Prezant DJ; Malley KS; Barker RL; Guerth C; Kelly KJ
    Inj Prev; 2001 Sep; 7 Suppl 1(Suppl 1):i43-9. PubMed ID: 11565971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.