These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2581714)

  • 1. In vitro miscoding of alkylthymines with DNA and RNA polymerases.
    Saffhill R
    Chem Biol Interact; 1985; 53(1-2):121-30. PubMed ID: 2581714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling studies of O2-alkylthymines and O4-alkylthymines in DNA: structures that may be pertinent to the incorporation of the corresponding dAlkTTP into DNA by DNA polymerases in vitro.
    Loechler EL
    Mutat Res; 1990; 233(1-2):39-44. PubMed ID: 2233811
    [No Abstract]   [Full Text] [Related]  

  • 3. DNA-synthesis with methylated poly(dA-dT) templates: possible role of O4-methylthymine as a pro-mutagenic base.
    Abbott PJ; Saffhill R
    Nucleic Acids Res; 1977 Mar; 4(3):761-9. PubMed ID: 325522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the relative mutagenicities of O-alkylthymines site-specifically incorporated into phi X174 DNA.
    Preston BD; Singer B; Loeb LA
    J Biol Chem; 1987 Oct; 262(28):13821-7. PubMed ID: 2958453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific gap-misrepair mutagenesis by O4-ethylthymine.
    Duran HL; Wani AA
    Biochim Biophys Acta; 1987 Jan; 908(1):60-9. PubMed ID: 3026482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases.
    Swann PF
    Mutat Res; 1990; 233(1-2):81-94. PubMed ID: 2233815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the promutagenic nature of 3-methylcytosine as revealed by DNA and RNA polymerising enzymes.
    Saffhill R
    Carcinogenesis; 1984 May; 5(5):691-3. PubMed ID: 6373042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and template activities of polynucleotides containing O2- and O4-alkyluridine.
    Singer B; Fraenkel-Conrat H; Kuśmierek JT
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1722-6. PubMed ID: 273902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro.
    Clark JM; Beardsley GP
    Nucleic Acids Res; 1986 Jan; 14(2):737-49. PubMed ID: 3511447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified polynucleotides. IV. Template activity of 5-alkyluracil-containing poly [d(A-r5U)] copolymers for DNA and RNA polymerases.
    Sági J; Otvös L
    Nucleic Acids Res; 1979 Nov; 7(6):1593-601. PubMed ID: 388357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The incorporation of O6-methyldeoxyguanosine and O4-methyldeoxythymidine monophosphates into DNA by DNA polymerases I and alpha.
    Hall JA; Saffhill R
    Nucleic Acids Res; 1983 Jun; 11(12):4185-93. PubMed ID: 6866769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [DNA polymerases of animal cells: III. DNA replication and DNA polymerase alpha (author's transl)].
    Matsukage A
    Tanpakushitsu Kakusan Koso; 1977; 22(2):131-42. PubMed ID: 322217
    [No Abstract]   [Full Text] [Related]  

  • 14. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.
    Saffhill R; Abbott PJ
    Nucleic Acids Res; 1978 Jun; 5(6):1971-8. PubMed ID: 353735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular biology: prime-time progress.
    Bell SD
    Nature; 2006 Feb; 439(7076):542-3. PubMed ID: 16452964
    [No Abstract]   [Full Text] [Related]  

  • 16. Miscoding properties of 3,N4-etheno-2'-deoxycytidine in reactions catalyzed by mammalian DNA polymerases.
    Shibutani S; Suzuki N; Matsumoto Y; Grollman AP
    Biochemistry; 1996 Nov; 35(47):14992-8. PubMed ID: 8942665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative efficiency of forming m4T.G versus m4T.A base pairs at a unique site by use of Escherichia coli DNA polymerase I (Klenow fragment) and Drosophila melanogaster polymerase alpha-primase complex.
    Dosanjh MK; Essigmann JM; Goodman MF; Singer B
    Biochemistry; 1990 May; 29(19):4698-703. PubMed ID: 2115381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli polymerase I can use O2-methyldeoxythymidine or O4-methyldeoxythymidine in place of deoxythymidine in primed poly(dA-dT).poly(dA-dT) synthesis.
    Singer B; Sági J; Kuśmierek JT
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4884-8. PubMed ID: 6348776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.
    Gowda AS; Spratt TE
    Chem Res Toxicol; 2016 Mar; 29(3):303-16. PubMed ID: 26868090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase activities and RNA structures in the atomic force microscope.
    Hansma HG; Golan R; Hsieh W; Daubendiek SL; Kool ET
    J Struct Biol; 1999 Oct; 127(3):240-7. PubMed ID: 10544049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.