BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25817426)

  • 1. Optimization of medium components and physicochemical parameters to simultaneously enhance microbial growth and production of lypolitic enzymes by Stenotrophomonas sp.
    Mazzucotelli CA; Agüero MV; Del Rosario Moreira M; Ansorena MR
    Biotechnol Appl Biochem; 2016 May; 63(3):407-18. PubMed ID: 25817426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis.
    Mazzucotelli CA; Moreira Mdel R; Ansorena MR
    Can J Microbiol; 2016 Jan; 62(1):24-34. PubMed ID: 26529589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat.
    Priji P; Unni KN; Sajith S; Binod P; Benjamin S
    Biotechnol Appl Biochem; 2015; 62(1):71-8. PubMed ID: 24773509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology.
    Rajendran A; Thangavelu V
    Can J Microbiol; 2007 May; 53(5):643-55. PubMed ID: 17668023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology.
    Gupta N; Mehra G; Gupta R
    Can J Microbiol; 2004 May; 50(5):361-8. PubMed ID: 15213744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of response surface methodology for enhanced production of a thermostable bacterial lipase in a novel yeast system.
    Abu ML; Mohammad R; Oslan SN; Salleh AB
    Prep Biochem Biotechnol; 2021; 51(4):350-360. PubMed ID: 32940138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology.
    Kumar R; Mahajan S; Kumar A; Singh D
    N Biotechnol; 2011 Jan; 28(1):65-71. PubMed ID: 20601261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and characterization of esterase and lipase from Haloarcula marismortui.
    Camacho RM; Mateos JC; González-Reynoso O; Prado LA; Córdova J
    J Ind Microbiol Biotechnol; 2009 Jul; 36(7):901-9. PubMed ID: 19350295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Lipase production from a novel strain Thalassospira permensis M35-15 using Response Surface Methodology.
    Kai W; Peisheng Y
    Bioengineered; 2016 Sep; 7(5):298-303. PubMed ID: 27285376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs.
    Sifour M; Zaghloul TI; Saeed HM; Berekaa MM; Abdel-Fattah YR
    N Biotechnol; 2010 Sep; 27(4):330-6. PubMed ID: 20412872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling.
    Rajendran A; Palanisamy A; Thangavelu V
    Sheng Wu Gong Cheng Xue Bao; 2008 Mar; 24(3):436-44. PubMed ID: 18589820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods.
    Yele VU; Desai K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):855-69. PubMed ID: 25344436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase and esterase formation by psychrophilic and mesophilic Acinetobacter species.
    Breuil C; Kushner DJ
    Can J Microbiol; 1975 Apr; 21(4):423-33. PubMed ID: 235353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).
    Vasiee A; Behbahani BA; Yazdi FT; Moradi S
    Microb Pathog; 2016 Dec; 101():36-43. PubMed ID: 27816679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei.
    Liu GQ; Wang XL
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):78-83. PubMed ID: 17086412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondii strain SO using response surface methodology.
    Abu ML; Nooh HM; Oslan SN; Salleh AB
    BMC Biotechnol; 2017 Nov; 17(1):78. PubMed ID: 29126403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm.
    Moorthy IM; Baskar R
    Prep Biochem Biotechnol; 2013; 43(3):293-314. PubMed ID: 23379276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology.
    Khan MA; Hamid R; Ahmad M; Abdin MZ; Javed S
    J Microbiol Biotechnol; 2010 Nov; 20(11):1597-602. PubMed ID: 21124068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method.
    Teng Y; Xu Y
    Bioresour Technol; 2008 Jun; 99(9):3900-7. PubMed ID: 17888652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of physical parameters for lipase production from Arthrobacter sp. BGCC#490.
    Sharma A; Bardhan D; Patel R
    Indian J Biochem Biophys; 2009 Apr; 46(2):178-83. PubMed ID: 19517996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.