BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25817578)

  • 1. Effects of different forms and origins of oilseeds on dynamics of ruminal biohydrogenation of long-chain fatty acids in vitro.
    Hoffmann A; Steingass H; Schollenberger M; Terry H; Hartung K; Weiss E; Mosenthin R
    J Anim Physiol Anim Nutr (Berl); 2015 Dec; 99(6):1031-8. PubMed ID: 25817578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in fatty acid composition of various full fat crushed oilseeds and their free oils when incubated with rumen liquor in vitro.
    Hoffmann A; Steingass H; Schollenberger M; Jara HT; Hartung K; Weiss E; Mosenthin R
    Arch Anim Nutr; 2013 Feb; 67(1):77-92. PubMed ID: 23301837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.
    Troegeler-Meynadier A; Puaut S; Farizon Y; Enjalbert F
    J Dairy Sci; 2014 Sep; 97(9):5657-67. PubMed ID: 24996268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.
    Pashaei S; Ghoorchi T; Yamchi A
    J Anim Physiol Anim Nutr (Berl); 2016 Apr; 100(2):211-6. PubMed ID: 26094995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical note: An in vivo method to determine kinetics of unsaturated fatty acid biohydrogenation in the rumen.
    Baldin M; Rico DE; Green MH; Harvatine KJ
    J Dairy Sci; 2018 May; 101(5):4259-4267. PubMed ID: 29454700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids.
    Zened A; Troegeler-Meynadier A; Nicot MC; Combes S; Cauquil L; Farizon Y; Enjalbert F
    J Dairy Sci; 2011 Nov; 94(11):5634-45. PubMed ID: 22032386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grape seed tannin extract and polyunsaturated fatty acids affect in vitro ruminal fermentation and methane production.
    Thanh LP; Kha PTT; Loor JJ; Hang TTT
    J Anim Sci; 2022 Mar; 100(3):. PubMed ID: 35137104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Papaya (Carica papaya) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation.
    Jafari S; Goh YM; Rajion MA; Jahromi MF; Ahmad YH; Ebrahimi M
    Anim Sci J; 2017 Feb; 88(2):267-276. PubMed ID: 27345820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes.
    Toral PG; Hervás G; Carreño D; Leskinen H; Belenguer A; Shingfield KJ; Frutos P
    J Dairy Sci; 2017 Aug; 100(8):6187-6198. PubMed ID: 28601459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of increasing levels of corn dried distillers grains with solubles and monensin on ruminal biohydrogenation and duodenal flows of fatty acids in beef heifers fed high-grain diets.
    Xu L; Jin Y; He ML; Li C; Beauchemin KA; Yang WZ
    J Anim Sci; 2014 Mar; 92(3):1089-98. PubMed ID: 24492547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measured in vitro.
    Jouany JP; Lassalas B; Doreau M; Glasser F
    Lipids; 2007 Apr; 42(4):351-60. PubMed ID: 17406930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo kinetics of oleic, linoleic, and α-linolenic acid biohydrogenation in the rumen of dairy cows.
    Baldin M; Adeniji YA; Souza JG; Green MH; Harvatine KJ
    J Dairy Sci; 2022 Sep; 105(9):7373-7385. PubMed ID: 35931484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n-3 in vitro.
    Sterk A; Hovenier R; Vlaeminck B; van Vuuren AM; Hendriks WH; Dijkstra J
    J Dairy Sci; 2010 Nov; 93(11):5286-99. PubMed ID: 20965345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of rumen-protected fat, coconut oil and various oilseeds supplemented to fattening bulls. 2. Effects on composition and oxidative stability of adipose tissues.
    Casutt MM; Scheeder MR; Ossowski DA; Sutter F; Sliwinski BJ; Danilo AA; Kreuzer M
    Arch Tierernahr; 2000; 53(1):25-44. PubMed ID: 10836256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents.
    Beam TM; Jenkins TC; Moate PJ; Kohn RA; Palmquist DL
    J Dairy Sci; 2000 Nov; 83(11):2564-73. PubMed ID: 11104276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in rate of ruminal hydrogenation of C18 fatty acids in clover and ryegrass.
    Lejonklev J; Storm AC; Larsen MK; Mortensen G; Weisbjerg MR
    Animal; 2013 Oct; 7(10):1607-13. PubMed ID: 23842207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chemical form, heating, and oxidation products of linoleic acid on rumen bacterial population and activities of biohydrogenating enzymes.
    Kaleem A; Enjalbert F; Farizon Y; Troegeler-Meynadier A
    J Dairy Sci; 2013; 96(11):7167-7180. PubMed ID: 24011948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep.
    Chikunya S; Demirel G; Enser M; Wood JD; Wilkinson RG; Sinclair LA
    Br J Nutr; 2004 Apr; 91(4):539-50. PubMed ID: 15035681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rumen biohydrogenation of linoleic and linolenic acids is reduced when esterified to phospholipids or steroids.
    Lashkari S; Bonefeld Petersen M; Krogh Jensen S
    Food Sci Nutr; 2020 Jan; 8(1):79-87. PubMed ID: 31993134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.