BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1982 related articles for article (PubMed ID: 25817600)

  • 41. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization.
    Lee SC; Huh KM; Lee J; Cho YW; Galinsky RE; Park K
    Biomacromolecules; 2007 Jan; 8(1):202-8. PubMed ID: 17206808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel intracellular pH-responsive formulation for FTY720 based on PEGylated graphene oxide nano-sheets.
    Masoudipour E; Kashanian S; Maleki N; Karamyan A; Omidfar K
    Drug Dev Ind Pharm; 2018 Jan; 44(1):99-108. PubMed ID: 28956455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composite micelles consisting of paclitaxel- and folic acid-carrying copolymers for treatment of Lewis lung cancer.
    Zheng Y; Wan Y; Song X; Hu X; Liu S; Jing X
    J Control Release; 2011 Nov; 152 Suppl 1():e123-4. PubMed ID: 22195794
    [No Abstract]   [Full Text] [Related]  

  • 45. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier.
    Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G
    Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system.
    Zhang X; Zhang X; Yu P; Han Y; Li Y; Li C
    J Pharm Sci; 2013 Jan; 102(1):145-53. PubMed ID: 23132353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a graphene oxide-poly lactide nanocomposite as a Smart Drug Delivery System.
    Ghamkhari A; Abbaspour-Ravasjani S; Talebi M; Hamishehkar H; Hamblin MR
    Int J Biol Macromol; 2021 Feb; 169():521-531. PubMed ID: 33340628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oligo(lactic acid)n-Paclitaxel Prodrugs for Poly(ethylene glycol)-block-poly(lactic acid) Micelles: Loading, Release, and Backbiting Conversion for Anticancer Activity.
    Tam YT; Gao J; Kwon GS
    J Am Chem Soc; 2016 Jul; 138(28):8674-7. PubMed ID: 27374999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel.
    Ruan G; Feng SS
    Biomaterials; 2003 Dec; 24(27):5037-44. PubMed ID: 14559017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies.
    Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S
    Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery.
    Cho H; Gao J; Kwon GS
    J Control Release; 2016 Oct; 240():191-201. PubMed ID: 26699425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: Carriers for anti-cancer drugs.
    Tan J; Meng N; Fan Y; Su Y; Zhang M; Xiao Y; Zhou N
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():681-7. PubMed ID: 26838897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.
    Gupta R; Shea J; Scafe C; Shurlygina A; Rapoport N
    J Control Release; 2015 Aug; 212():70-7. PubMed ID: 26091919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon Green® 488 labeled paclitaxel as a model compound.
    Lee JS; Feijen J
    J Control Release; 2012 Mar; 158(2):312-8. PubMed ID: 22063005
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents.
    Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B
    Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation.
    Ren H; Gao C; Zhou L; Liu M; Xie C; Lu W
    Drug Deliv; 2015; 22(6):785-94. PubMed ID: 24670093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier.
    Venkatraman SS; Jie P; Min F; Freddy BY; Leong-Huat G
    Int J Pharm; 2005 Jul; 298(1):219-32. PubMed ID: 15946811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel combined micellar system of lapatinib and Paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro.
    Wei Y; Xu S; Wang F; Zou A; Zhang S; Xiong Y; Cao S; Zhang Q; Wang Y; Jiang X
    J Pharm Sci; 2015 Jan; 104(1):165-77. PubMed ID: 25421492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 100.