These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25817609)

  • 1. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material.
    Sweeney CA; O'Brien B; Dunne FP; McHugh PE; Leen SB
    J Mech Behav Biomed Mater; 2015 Jun; 46():244-60. PubMed ID: 25817609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental characterisation for micromechanical modelling of CoCr stent fatigue.
    Sweeney CA; O'Brien B; McHugh PE; Leen SB
    Biomaterials; 2014 Jan; 35(1):36-48. PubMed ID: 24120042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational micromechanics of bioabsorbable magnesium stents.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2014 Jun; 34():93-105. PubMed ID: 24566380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue behavior of stent in tapered arteries: The role of arterial tapering and stent material.
    Shen X; Zhu H; Ji S; Jiang J; Deng Y
    Proc Inst Mech Eng H; 2019 Oct; 233(10):989-998. PubMed ID: 31277553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth.
    Kanerva M; Besharat Z; Pärnänen T; Jokinen J; Honkanen M; Sarlin E; Göthelid M; Schlenzka D
    J Mech Behav Biomed Mater; 2019 Nov; 99():93-103. PubMed ID: 31349149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.
    Kowalski W; Dammer M; Bakczewitz F; Schmitz KP; Grabow N; Kessler O
    J Mech Behav Biomed Mater; 2015 Sep; 49():23-9. PubMed ID: 25974098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of grain size on the ductility of micro-scale stainless steel stent struts.
    Murphy BP; Cuddy H; Harewood FJ; Connolley T; McHugh PE
    J Mater Sci Mater Med; 2006 Jan; 17(1):1-6. PubMed ID: 16389466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture toughness of CoCr alloy-PMMA cement interface.
    Mann KA; Edidin AA; Ordway NR; Manley MT
    J Biomed Mater Res; 1997; 38(3):211-9. PubMed ID: 9283966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of endothelial and smooth muscle cells with cobalt-chromium alloy surfaces coated with paclitaxel deposited self-assembled monolayers.
    Lamichhane S; Lancaster S; Thiruppathi E; Mani G
    Langmuir; 2013 Nov; 29(46):14254-64. PubMed ID: 24156365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of self-assembled monolayers on electropolished L605 cobalt chromium alloy for stent applications.
    Kaufmann C; Mani G; Marton D; Johnson D; Agrawal CM
    J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):280-9. PubMed ID: 21604365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices.
    Petrini L; Bertini A; Berti F; Pennati G; Migliavacca F
    Proc Inst Mech Eng H; 2017 May; 231(5):391-404. PubMed ID: 28427320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents.
    Kapnisis K; Constantinides G; Georgiou H; Cristea D; Gabor C; Munteanu D; Brott B; Anderson P; Lemons J; Anayiotos A
    J Mech Behav Biomed Mater; 2014 Dec; 40():240-251. PubMed ID: 25255419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach.
    Argente dos Santos HA; Auricchio F; Conti M
    J Mech Behav Biomed Mater; 2012 Nov; 15():78-92. PubMed ID: 23032428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On cobalt-chrome frameworks in implant dentistry.
    Hjalmarsson L
    Swed Dent J Suppl; 2009; (201):3-83. PubMed ID: 20143574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model.
    Peng K; Cui X; Qiao A; Mu Y
    Biomed Eng Online; 2019 Apr; 18(1):39. PubMed ID: 30940146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.