BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25817660)

  • 1. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Component Nanocomposites Made from Diblock Copolymer Grafted Cellulose Nanocrystals.
    Rader C; Fritz PW; Ashirov T; Coskun A; Weder C
    Biomacromolecules; 2024 Mar; 25(3):1637-1648. PubMed ID: 38381566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets.
    Strankowski M; Korzeniewski P; Strankowska J; A S A; Thomas S
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets.
    Xu D; Wang S; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films.
    Kassab Z; Daoudi H; Salim MH; El Idrissi El Hassani C; Abdellaoui Y; El Achaby M
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130892. PubMed ID: 38513904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Alkylation of Cellulose Nanocrystals to Enhance Their Compatibility with Polylactide.
    Lee JH; Park SH; Kim SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly (ε-Caprolactone)/Cellulose Nanofiber Blend Nanocomposites Containing ZrO2 Nanoparticles: A New Biocompatible Wound Dressing Bandage with Antimicrobial Activity.
    Khanmohammadi S; Karimian R; Ghanbari Mehrabani M; Mehramuz B; Ganbarov K; Ejlali L; Tanomand A; Kamounah FS; Ahangarzadeh Rezaee M; Yousefi M; Sheykhsaran E; Samadi Kafil H
    Adv Pharm Bull; 2020 Sep; 10(4):577-585. PubMed ID: 33072535
    [No Abstract]   [Full Text] [Related]  

  • 8. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials.
    Trache D; Tarchoun AF; Abdelaziz A; Bessa W; Thakur S; Hussin MH; Brosse N; Thakur VK
    Int J Biol Macromol; 2024 May; 268(Pt 2):131633. PubMed ID: 38641279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.
    Xu C; Zhu S; Xing C; Li D; Zhu N; Zhou H
    PLoS One; 2015; 10(4):e0122123. PubMed ID: 25875280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of preservatives and evaluation of sterilized cellulose nanofibers for toxicity studies.
    Sai T; Maru J; Obara S; Endoh S; Kajihara H; Fujita K
    J Occup Health; 2020 Jan; 62(1):e12176. PubMed ID: 33159502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on cellulose nanofibrils/copolymacrolactone based nano-composites with hydrophobic behaviour, self-healing ability and antioxidant activity.
    Chiriac AP; Ghilan A; Croitoriu A; Serban A; Bercea M; Stoleru E; Nita LE; Doroftei F; Stoica I; Bargan A; Rusu AG; Chiriac VM
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):130034. PubMed ID: 38340942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring.
    Zhao X; Wang W; Cheng J; Xia Y; Duan C; Zhong R; Zhao X; Li X; Ni Y
    Food Chem; 2024 Sep; 453():139673. PubMed ID: 38772308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic nanofibrillated cellulose/polyurethane composites with antibacterial, antifouling and self-healing properties for potential catheter applications.
    Zhao X; Yang K; Song B; Qiu H; Zhao J; Liu H; Lin Z; Han L; Zhang R
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130407. PubMed ID: 38417747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Cellulose Nanofiber-Based Elastase Biosensors to Inflammatory Disease as a Function of Spacer Length and Fluorescence Response.
    Easson MW; Jordan JH; Edwards JV; Prevost NT; Dupre RA; Hillyer MB; Lima IM; Nam S
    ACS Appl Bio Mater; 2024 Mar; 7(3):1490-1500. PubMed ID: 38377436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic design of micro- and nano-wrinkle wood surface via coating reinforced with hyperbranched polymer grafted cellulose nanofibers for skin-tactile performance.
    Liu R; Sun Y; Sun Y; Li H; Chen M; Long L; Gong J; Lv B; Ni Y
    Carbohydr Polym; 2024 Jun; 334():122035. PubMed ID: 38553204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylation of Nanocellulose: Miscibility and Reinforcement Mechanisms in Polymer Nanocomposites.
    Wohlert J; Chen P; Berglund LA; Lo Re G
    ACS Nano; 2024 Jan; 18(3):1882-1891. PubMed ID: 38048271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking.
    Vadillo J; Larraza I; Calvo-Correas T; Martin L; Derail C; Eceiza A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Characterization of Polysulfone Membranes Reinforced with Cellulose Nanofibers.
    Alasfar RH; Kochkodan V; Ahzi S; Barth N; Koç M
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Characterization and Properties of Soybean Oil-Based Polyurethane.
    Xu Q; Lin J; Jiang G
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of melt-recyclable poly(ε-caprolactone)-based supramolecular shape-memory nanocomposites.
    Pilate F; Wen ZB; Khelifa F; Hui Y; Delpierre S; Dan L; Mincheva R; Dubois P; Yang KK; Raquez JM
    RSC Adv; 2018 Jul; 8(48):27119-27130. PubMed ID: 35540004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.