BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25817762)

  • 1. Arsenic speciation driving risk based corrective action.
    Marlborough SJ; Wilson VL
    Sci Total Environ; 2015 Jul; 520():253-9. PubMed ID: 25817762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic.
    Yang Y; Zhang A; Chen Y; Liu J; Cao H
    Ecotoxicol Environ Saf; 2018 Oct; 162():400-407. PubMed ID: 30015185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.
    Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C
    Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter.
    Yoon Y; Kim S; Chae Y; Jeong SW; An YJ
    Sci Total Environ; 2016 Mar; 547():125-131. PubMed ID: 26780137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile arsenic species in unpolluted and polluted soils.
    Huang JH; Matzner E
    Sci Total Environ; 2007 May; 377(2-3):308-18. PubMed ID: 17391732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.
    Yan X; Liu Q; Wang J; Liao X
    J Environ Sci (China); 2017 Jul; 57():104-109. PubMed ID: 28647229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.
    Martin M; Violante A; Barberis E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1775-83. PubMed ID: 17952778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra.
    Ng JC; Kratzmann SM; Qi L; Crawley H; Chiswell B; Moore MR
    Analyst; 1998 May; 123(5):889-92. PubMed ID: 9709482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.
    Jho EH; Im J; Yang K; Kim YJ; Nam K
    Chemosphere; 2015 Jan; 119():1399-1405. PubMed ID: 25482580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].
    Chen XF; Li XM; Chen C; Yang Q; Deng LJ; Xie WQ; Zhong Y; Huang B; Yang WQ; Zhang ZB
    Huan Jing Ke Xue; 2016 Mar; 37(3):1147-55. PubMed ID: 27337912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.
    Im J; Yang K; Jho EH; Nam K
    Chemosphere; 2015 Nov; 138():253-8. PubMed ID: 26086811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils.
    Suedel BC; Nicholson A; Day CH; Spicer J
    Integr Environ Assess Manag; 2006 Oct; 2(4):355-64. PubMed ID: 17069177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area.
    Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P
    Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.