These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25817995)

  • 1. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
    Yan W; Ye Q; Tan M; Chen X; Eriani G; Wang ED
    J Biol Chem; 2015 May; 290(19):12256-67. PubMed ID: 25817995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-specific domain modulates the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Yan W; Tan M; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(9):4988-98. PubMed ID: 23525458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.
    Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED
    Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing.
    Zhou XL; Zhu B; Wang ED
    J Biol Chem; 2008 Dec; 283(52):36608-16. PubMed ID: 18955487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A glycine hinge for tRNA-dependent translocation of editing substrates to prevent errors by leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    FEBS Lett; 2009 Nov; 583(21):3443-7. PubMed ID: 19796639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.
    Xu MG; Zhao MW; Wang ED
    J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity.
    Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED
    RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing.
    Vu MT; Martinis SA
    Biochemistry; 2007 May; 46(17):5170-6. PubMed ID: 17407263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase.
    Chen JF; Li T; Wang ED; Wang YL
    Biochemistry; 2001 Feb; 40(5):1144-9. PubMed ID: 11170439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation.
    Tan M; Wang M; Zhou XL; Yan W; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(10):5513-23. PubMed ID: 23585282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of tRNA(Leu) isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing.
    Du X; Wang ED
    Biochemistry; 2002 Aug; 41(34):10623-8. PubMed ID: 12186547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Palencia A; Crépin T; Vu MT; Lincecum TL; Martinis SA; Cusack S
    Nat Struct Mol Biol; 2012 Jun; 19(7):677-84. PubMed ID: 22683997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.