These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 2581813)

  • 1. Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells.
    Findlay I; Dunne MJ; Ullrich S; Wollheim CB; Petersen OH
    FEBS Lett; 1985 Jun; 185(1):4-8. PubMed ID: 2581813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium-selective ion channels in a transformed insulin-secreting cell line.
    Light DB; Van Eenenaam DP; Sorenson RL; Levitt DG
    J Membr Biol; 1987; 95(1):63-72. PubMed ID: 2435914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells.
    Findlay I; Dunne MJ; Petersen OH
    J Membr Biol; 1985; 88(2):165-72. PubMed ID: 2419566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of tetraethylammonium on calcium-activated potassium channels in pig pancreatic acinar cells studied by patch-clamp single-channel and whole-cell current recording.
    Iwatsuki N; Petersen OH
    J Membr Biol; 1985; 86(2):139-44. PubMed ID: 2411930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking agents of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells.
    Guggino SE; Guggino WB; Green N; Sacktor B
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C128-37. PubMed ID: 2435161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of tetraethylammonium and quinine for three K channels in insulin-secreting cells.
    Fatherazi S; Cook DL
    J Membr Biol; 1991 Mar; 120(2):105-14. PubMed ID: 2072381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():327-42. PubMed ID: 2201761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of calcium channels and intercellular couplings in the testosterone-secreting cells of the mouse.
    Kawa K
    J Physiol; 1987 Dec; 393():647-66. PubMed ID: 2451748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones.
    Smart TG
    J Physiol; 1987 Aug; 389():337-60. PubMed ID: 2445975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ACh-evoked, Ca2+-activated whole-cell K+ current in mouse mandibular secretory cells. Whole-cell and fluorescence studies.
    Hayashi T; Poronnik P; Young JA; Cook DI
    J Membr Biol; 1996 Aug; 152(3):253-9. PubMed ID: 8672087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetraethylammonium blockade of calcium-activated potassium channels in clonal anterior pituitary cells.
    Wong BS; Adler M
    Pflugers Arch; 1986 Sep; 407(3):279-84. PubMed ID: 2429252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium.
    Segal Y; Reuss L
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C56-68. PubMed ID: 2372050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single calcium-activated potassium channel in cultured mammary epithelial cells.
    Furuya K; Enomoto K; Furuya S; Yamagishi S; Edwards C; Oka T
    Pflugers Arch; 1989 Jun; 414(2):118-24. PubMed ID: 2474145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium currents in hair cells isolated from the cochlea of the chick.
    Fuchs PA; Evans MG
    J Physiol; 1990 Oct; 429():529-51. PubMed ID: 2277357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells.
    Rorsman P; Arkhammar P; Berggren PO
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C912-9. PubMed ID: 2431624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+.
    Wegner LH; De Boer AH; Raschke K
    J Membr Biol; 1994 Dec; 142(3):363-79. PubMed ID: 7707363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling.
    Roe MW; Worley JF; Mittal AA; Kuznetsov A; DasGupta S; Mertz RJ; Witherspoon SM; Blair N; Lancaster ME; McIntyre MS; Shehee WR; Dukes ID; Philipson LH
    J Biol Chem; 1996 Dec; 271(50):32241-6. PubMed ID: 8943282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cell.
    Ohya Y; Terada K; Kitamura K; Kuriyama H
    Am J Physiol; 1986 Sep; 251(3 Pt 1):C335-46. PubMed ID: 2428252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage and Ca2+-activated K+ channel in cultured epithelial cells (MDCK).
    BolĂ­var JJ; Cereijido M
    J Membr Biol; 1987; 97(1):43-51. PubMed ID: 2441067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.