These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 25818150)
1. μCT based assessment of mechanical deformation of designed PTMC scaffolds. Narra N; Blanquer SB; Haimi SP; Grijpma DW; Hyttinen J Clin Hemorheol Microcirc; 2015; 60(1):99-108. PubMed ID: 25818150 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of tubular poly(trimethylene carbonate) tissue engineering scaffolds in a circulating pulsatile flow system. Song Y; Wennink JW; Poot AA; Vermes I; Feijen J; Grijpma DW Int J Artif Organs; 2011 Feb; 34(2):161-71. PubMed ID: 21374572 [TBL] [Abstract][Full Text] [Related]
3. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Blanquer SBG; Werner M; Hannula M; Sharifi S; Lajoinie GPR; Eglin D; Hyttinen J; Poot AA; Grijpma DW Biofabrication; 2017 Apr; 9(2):025001. PubMed ID: 28402967 [TBL] [Abstract][Full Text] [Related]
4. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
5. Preparation of a designed poly(trimethylene carbonate) microvascular network by stereolithography. Schüller-Ravoo S; Zant E; Feijen J; Grijpma DW Adv Healthc Mater; 2014 Dec; 3(12):2004-11. PubMed ID: 25319598 [TBL] [Abstract][Full Text] [Related]
6. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974 [TBL] [Abstract][Full Text] [Related]
12. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060 [TBL] [Abstract][Full Text] [Related]
13. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks. Rongen JJ; van Bochove B; Hannink G; Grijpma DW; Buma P J Biomed Mater Res A; 2016 Nov; 104(11):2823-32. PubMed ID: 27392321 [TBL] [Abstract][Full Text] [Related]
14. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. De Santis R; D'Amora U; Russo T; Ronca A; Gloria A; Ambrosio L J Mater Sci Mater Med; 2015 Oct; 26(10):250. PubMed ID: 26420041 [TBL] [Abstract][Full Text] [Related]
15. 3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure. Mandal S; Meininger S; Gbureck U; Basu B J Mater Sci Mater Med; 2018 Mar; 29(3):29. PubMed ID: 29520670 [TBL] [Abstract][Full Text] [Related]
16. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]
19. Poly(trimethylene carbonate) flexible intestinal anastomosis scaffolds to reduce the probability of intestinal fistula and obstruction. Ren Y; Li X; Wu L; Pan L; Ji Z; Shi C; Zhang X J Mater Chem B; 2021 Jul; 9(26):5340-5351. PubMed ID: 34152354 [TBL] [Abstract][Full Text] [Related]
20. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. Yao Q; Wei B; Guo Y; Jin C; Du X; Yan C; Yan J; Hu W; Xu Y; Zhou Z; Wang Y; Wang L J Mater Sci Mater Med; 2015 Jan; 26(1):5360. PubMed ID: 25596860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]