BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 25818303)

  • 1. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.
    Kistler KE; Vosshall LB; Matthews BJ
    Cell Rep; 2015 Apr; 11(1):51-60. PubMed ID: 25818303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector,
    Li M; Bui M; Yang T; Bowman CS; White BJ; Akbari OS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10540-E10549. PubMed ID: 29138316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti.
    Dong S; Lin J; Held NL; Clem RJ; Passarelli AL; Franz AW
    PLoS One; 2015; 10(3):e0122353. PubMed ID: 25815482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.
    Basu S; Aryan A; Overcash JM; Samuel GH; Anderson MA; Dahlem TJ; Myles KM; Adelman ZN
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4038-43. PubMed ID: 25775608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Mediated Genome Engineering in Aedes aegypti.
    Sun R; Li M; McMeniman CJ; Akbari OS
    Methods Mol Biol; 2022; 2509():23-51. PubMed ID: 35796955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus.
    Liu T; Yang WQ; Xie YG; Liu PW; Xie LH; Lin F; Li CY; Gu JB; Wu K; Yan GY; Chen XG
    Insect Sci; 2019 Dec; 26(6):1045-1054. PubMed ID: 30311353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indel Detection following CRISPR/Cas9 Mutagenesis using High-resolution Melt Analysis in the Mosquito Aedes aegypti.
    Kojin BB; Tsujimoto H; Jakes E; O'Leary S; Adelman ZN
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34570096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.
    Basu S; Aryan A; Haac ME; Myles KM; Adelman ZN
    Methods Mol Biol; 2016; 1338():157-77. PubMed ID: 26443221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A selectable, plasmid-based system to generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines.
    Rozen-Gagnon K; Yi S; Jacobson E; Novack S; Rice CM
    Sci Rep; 2021 Jan; 11(1):736. PubMed ID: 33436886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Cas9 mediated knockout of sex determination pathway genes in
    Zulhussnain M; Zahoor MK; Ranian K; Ahmad A; Jabeen F
    Bull Entomol Res; 2023 Apr; 113(2):243-252. PubMed ID: 36259148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
    Port F; Chen HM; Lee T; Bullock SL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand.
    Gratz SJ; Wildonger J; Harrison MM; O'Connor-Giles KM
    Fly (Austin); 2013; 7(4):249-55. PubMed ID: 24088745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.
    Häcker I; Harrell Ii RA; Eichner G; Pilitt KL; O'Brochta DA; Handler AM; Schetelig MF
    Sci Rep; 2017 Mar; 7():43883. PubMed ID: 28266580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Toolkit for Genome Editing in a Disease Vector,
    Zhu GH; Albishi NM; Chen X; Brown RL; Palli SR
    CRISPR J; 2021 Dec; 4(6):846-853. PubMed ID: 33450159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropic Odorant-Binding Proteins Promote Aedes aegypti Reproduction and Flavivirus Transmission.
    Dong S; Ye Z; Tikhe CV; Tu ZJ; Zwiebel LJ; Dimopoulos G
    mBio; 2021 Oct; 12(5):e0253121. PubMed ID: 34634943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single-generation crosses and modeling.
    Reid W; Williams AE; Sanchez-Vargas I; Lin J; Juncu R; Olson KE; Franz AWE
    G3 (Bethesda); 2022 Dec; 12(12):. PubMed ID: 36250791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika.
    Joyce AL; Torres MM; Torres R; Moreno M
    Parasit Vectors; 2018 Dec; 11(1):637. PubMed ID: 30547835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.