BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25818361)

  • 1. Evaluation of inertial cavitation activity in tissue through measurement of oxidative stress.
    Prieur F; Pialoux V; Mestas JL; Mury P; Skinner S; Lafon C
    Ultrason Sonochem; 2015 Sep; 26():193-199. PubMed ID: 25818361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assay of hydroxyl radicals generated by focused ultrasound.
    Villeneuve L; Alberti L; Steghens JP; Lancelin JM; Mestas JL
    Ultrason Sonochem; 2009 Mar; 16(3):339-44. PubMed ID: 19010709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.
    Xu Z; Carlson C; Snell J; Eames M; Hananel A; Lopes MB; Raghavan P; Lee CC; Yen CP; Schlesinger D; Kassell NF; Aubry JF; Sheehan J
    J Neurosurg; 2015 Jan; 122(1):152-61. PubMed ID: 25380106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The decomposition of protoporphyrin IX by ultrasound is dependent on the generation of hydroxyl radicals.
    Xu H; Sun X; Yao J; Zhang J; Zhang Y; Chen H; Dan J; Tian Z; Tian Y
    Ultrason Sonochem; 2015 Nov; 27():623-630. PubMed ID: 25934126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue.
    Wang M; Zhou Y
    Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.
    Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N
    J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.
    Zhou Y; Gao XW
    J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual frequency cavitation event sensor with iodide dosimeter.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound.
    Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie Z; Hassan ZM
    Ultrason Sonochem; 2007 Sep; 14(6):783-9. PubMed ID: 17347019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdependence of Tissue Temperature, Cavitation, and Displacement Imaging During Focused Ultrasound Nerve Sonication.
    McCune EP; Lee SA; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Jul; 70(7):600-612. PubMed ID: 37256815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 Dunning rat tumour model.
    Mestas JL; Fowler RA; Evjen TJ; Somaglino L; Moussatov A; Ngo J; Chesnais S; Røgnvaldsson S; Fossheim SL; Nilssen EA; Lafon C
    J Drug Target; 2014 Sep; 22(8):688-97. PubMed ID: 24725154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of a peak in cavitation activity from HIFU exposures using TA fluorescence.
    Zhu C; He S; Shan M; Chen J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e349-51. PubMed ID: 16945397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an acoustic cavitation dose with hydroxyl radical production generated by inertial cavitation in pulsed mode: application to in vitro drug release from liposomes.
    Somaglino L; Bouchoux G; Mestas JL; Lafon C
    Ultrason Sonochem; 2011 Mar; 18(2):577-88. PubMed ID: 20801704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cavitation and free radical dosimeter for ultrasound.
    McLean JR; Mortimer AJ
    Ultrasound Med Biol; 1988; 14(1):59-64. PubMed ID: 2831648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.
    Gourevich D; Volovick A; Dogadkin O; Wang L; Mulvana H; Medan Y; Melzer A; Cochran S
    Ultrasound Med Biol; 2015 Jul; 41(7):1853-64. PubMed ID: 25887690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat.
    Kyriakou Z; Corral-Baques MI; Amat A; Coussios CC
    Ultrasound Med Biol; 2011 Apr; 37(4):568-79. PubMed ID: 21371810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of inertial cavitation in the enhancement of in vitro transscleral drug delivery.
    Razavi A; Clement D; Fowler RA; Birer A; Chavrier F; Mestas JL; Romano F; Chapelon JY; Béglé A; Lafon C
    Ultrasound Med Biol; 2014 Jun; 40(6):1216-27. PubMed ID: 24613634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.