These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 25818411)

  • 1. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology.
    Shao Y; Sang J; Fu J
    Biomaterials; 2015 Jun; 52():26-43. PubMed ID: 25818411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.
    Ireland RG; Simmons CA
    Stem Cells; 2015 Nov; 33(11):3187-96. PubMed ID: 26189759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale production of human pluripotent stem cell derived cardiomyocytes.
    Kempf H; Andree B; Zweigerdt R
    Adv Drug Deliv Rev; 2016 Jan; 96():18-30. PubMed ID: 26658242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.
    Talkhabi M; Aghdami N; Baharvand H
    Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobiology: a new frontier for human pluripotent stem cells.
    Sun Y; Fu J
    Integr Biol (Camb); 2013 Mar; 5(3):450-7. PubMed ID: 23337973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stencil Micropatterning for Spatial Control of Human Pluripotent Stem Cell Fate Heterogeneity.
    Yuan J; Sahni G; Toh YC
    Methods Mol Biol; 2016; 1516():171-181. PubMed ID: 27032943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions.
    Lee MO; Jeon H; Son MY; Lee SC; Cho YS
    Biochem Biophys Res Commun; 2017 Nov; 493(1):723-730. PubMed ID: 28859981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of complex oral organs using 3D cell organization technology.
    Oshima M; Ogawa M; Tsuji T
    Curr Opin Cell Biol; 2017 Dec; 49():84-90. PubMed ID: 29289879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kidney Organoids: A Translational Journey.
    Morizane R; Bonventre JV
    Trends Mol Med; 2017 Mar; 23(3):246-263. PubMed ID: 28188103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells.
    Qian T; Shusta EV; Palecek SP
    Curr Opin Genet Dev; 2015 Oct; 34():54-60. PubMed ID: 26313850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanobiology of human pluripotent stem cells.
    Earls JK; Jin S; Ye K
    Tissue Eng Part B Rev; 2013 Oct; 19(5):420-30. PubMed ID: 23472616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
    Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H
    Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems.
    Badenes SM; Fernandes TG; Rodrigues CAV; Diogo MM; Cabral JMS
    J Biotechnol; 2016 Sep; 234():71-82. PubMed ID: 27480342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review.
    Wang PY; Thissen H; Kingshott P
    Acta Biomater; 2016 Nov; 45():31-59. PubMed ID: 27596488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional cell culture matrices: state of the art.
    Lee J; Cuddihy MJ; Kotov NA
    Tissue Eng Part B Rev; 2008 Mar; 14(1):61-86. PubMed ID: 18454635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.
    Wilson HK; Canfield SG; Hjortness MK; Palecek SP; Shusta EV
    Fluids Barriers CNS; 2015 May; 12():13. PubMed ID: 25994964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges.
    Fan Y; Wu J; Ashok P; Hsiung M; Tzanakakis ES
    Stem Cell Rev Rep; 2015 Feb; 11(1):96-109. PubMed ID: 25077810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional biomaterials for the study of human pluripotent stem cells.
    Kraehenbuehl TP; Langer R; Ferreira LS
    Nat Methods; 2011 Aug; 8(9):731-6. PubMed ID: 21878920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
    Lei Y; Schaffer DV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):E5039-48. PubMed ID: 24248365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.