These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 2581844)

  • 21. Inhibitory effect of black tea, lemon juice, and other beverages on salivary and pancreatic amylases: What impact on bread starch digestion? A dynamic in vitro study.
    Freitas D; Le Feunteun S
    Food Chem; 2019 Nov; 297():124885. PubMed ID: 31253299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of alpha-amylase on in vitro growth of Legionella pneumophila.
    Bortner CA; Miller RD; Arnold RR
    Infect Immun; 1983 Jul; 41(1):44-9. PubMed ID: 6190756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of salivary amylase in gastric and intestinal digestion of starch.
    Lebenthal E
    Dig Dis Sci; 1987 Oct; 32(10):1155-7. PubMed ID: 2443325
    [No Abstract]   [Full Text] [Related]  

  • 24. Interactions of flavonoids with α-amylase and starch slowing down its digestion.
    Takahama U; Hirota S
    Food Funct; 2018 Feb; 9(2):677-687. PubMed ID: 29292445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The important role of salivary α-amylase in the gastric digestion of wheat bread starch.
    Freitas D; Le Feunteun S; Panouillé M; Souchon I
    Food Funct; 2018 Jan; 9(1):200-208. PubMed ID: 29260815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect on salivary enzymes of alpha-amylase inhibitor HOE 467.
    Rupp W; Grigoleit HG; Grötsch H
    Lancet; 1983 May; 1(8333):1103-4. PubMed ID: 6188934
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of an exogenous amylase on performance and total-tract digestibility in lactating dairy cows fed a high-byproduct diet.
    McCarthy MM; Engstrom MA; Azem E; Gressley TF
    J Dairy Sci; 2013 May; 96(5):3075-84. PubMed ID: 23498022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch.
    Mandel AL; Peyrot des Gachons C; Plank KL; Alarcon S; Breslin PA
    PLoS One; 2010 Oct; 5(10):e13352. PubMed ID: 20967220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of starch with a cyanidin-catechin pigment (vignacyanidin) isolated from Vigna angularis bean.
    Takahama U; Yamauchi R; Hirota S
    Food Chem; 2013 Dec; 141(3):2600-5. PubMed ID: 23871000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.
    Nozière P; Steinberg W; Silberberg M; Morgavi DP
    J Dairy Sci; 2014; 97(4):2319-28. PubMed ID: 24534508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DIGESTION OF STARCH IN VIVO AND IN VITRO IN A RAT INTESTINE.
    JESUITOVA NN; DELAEY P; UGOLEV AM
    Biochim Biophys Acta; 1964 May; 86():205-10. PubMed ID: 14167417
    [No Abstract]   [Full Text] [Related]  

  • 32. Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
    Lo Piparo E; Scheib H; Frei N; Williamson G; Grigorov M; Chou CJ
    J Med Chem; 2008 Jun; 51(12):3555-61. PubMed ID: 18507367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impairment of starch absorption by a potent amylase inhibitor.
    Brugge WR; Rosenfeld MS
    Am J Gastroenterol; 1987 Aug; 82(8):718-22. PubMed ID: 2440298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo action of alpha-amylase inhibitor from cranberry bean (Phaseolus vulgaris) in rat small intestine.
    Kotaru M; Iwami K; Yeh HY; Ibuki F
    J Nutr Sci Vitaminol (Tokyo); 1989 Dec; 35(6):579-88. PubMed ID: 2699495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis.
    Bhattarai RR; Dhital S; Wu P; Chen XD; Gidley MJ
    Food Funct; 2017 Jul; 8(7):2573-2582. PubMed ID: 28682366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Antienzymatic activities of two Leguminosae: bean pods and bean bulls. Antiamylase activity].
    Regerat F; Texier O; Barthomeuf C; Pourrat H
    Ann Pharm Fr; 1989; 47(2):74-9. PubMed ID: 2481995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds.
    Le Berre-Anton V; Bompard-Gilles C; Payan F; Rougé P
    Biochim Biophys Acta; 1997 Nov; 1343(1):31-40. PubMed ID: 9428656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Character of a wheat amylase inhibitor preparation and effects on fasting human pancreaticobiliary secretions and hormones.
    Choudhury A; Maeda K; Murayama R; DiMagno EP
    Gastroenterology; 1996 Nov; 111(5):1313-20. PubMed ID: 8898646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical characterisation of α-amylase inhibitors from Achyranthes aspera and their interactions with digestive amylases of coleopteran and lepidopteran insects.
    Hivrale VK; Chougule NP; Giri AP; Chhabda PJ; Kachole MS
    J Sci Food Agric; 2011 Aug; 91(10):1773-80. PubMed ID: 21445897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acid diffusion into rice boluses is influenced by rice type, variety, and presence of α-amylase.
    Mennah-Govela YA; Bornhorst GM; Singh RP
    J Food Sci; 2015 Feb; 80(2):E316-25. PubMed ID: 25559823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.